20 Key Calculations

1. Relative Formula Mass
2. Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)$
3. Moles to Particles
4. Moles Triangle
5. Concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$
6. Converting Concentration
7. Titration Calculation
8. Empirical Formula from Molecular Formula
9. Molecular Formula from Empirical Formula
10. Empirical Formula from Reacting Masses
11. Empirical Formula from \%composition
12. Conservation of Mass
13. Reacting Masses
14. Limiting Reagent
15. \% Yield
16. Atom Economy
17. Gas Volume
18. Isotope Calculation
19. Bond Enthalpy

Equation Sheet - Combined Only

Moles Triangle

Empirical Formula
Divide mass by RAM and then compare the ratios

Reacting Masses

Convert given mass to moles. Then convert moles to mass of unknown

Concentration

Bond Enthalpy
Energy change = bonds broken - bonds made

Equation Sheet - Separate Chemistry Only

Titration Equation $C_{A} V_{A}=C_{B} V_{B}$

Gas Volume
Triangle

Mole of solute=concentration x volume

1-Relative Formula Mass

The relative formula mass (RFM) is calculated by adding together the atomic masses of all the atoms shown in the formula.

Example: Calculate the relative formula mass of ammonia, NH_{3}. The relative atomic masses are: $\mathrm{H}=1.0$ and $\mathrm{N}=14.0$)

$$
R F M=14.0+(3 \times 1.0)=17.0
$$

You try:
Bronze: Calculate the relative formula mass of O_{2} (The relative atomic mass of $\mathrm{O}=16.0$)
Silver: Calculate the relative formula mass of NaNO_{3} (The relative atomic mass of $\mathrm{Na}=23.0, \mathrm{~N}=14.0, \mathrm{O}=16.0$)
Gold: Calculate the relative formula mass of $\mathrm{Mg}(\mathrm{OH})_{2}$ (The relative atomic mass of $\mathrm{Mg}=24.3, \mathrm{O}=16.0, \mathrm{H}=1.0$)

1-Relative Formula Mass - Answers

Bronze: Calculate the relative formula mass of O_{2} (The relative atomic mass of $\mathrm{O}=16.0$)

RFM $=2 \times 16.0=32.0$

Silver: Calculate the relative formula mass of NaNO_{3} (The relative atomic mass of $\mathrm{Na}=23.1, \mathrm{~N}=14.0, \mathrm{O}=16.0$)

$$
\text { RFM }=23.0+14.0+(3 \times 16.0)=62.0
$$

Gold: Calculate the relative formula mass of $\mathrm{Mg}(\mathrm{OH})_{2}$ (The relative atomic mass of $\mathrm{Mg}=24.3, \mathrm{O}=16.0, \mathrm{H}=1.0$)

$$
\text { RFM }=24.3+2(16.0+1.0)=58.3
$$

1-Calculating Relative Formula Mass

 calculation using 1 dp for Ar as required by A levelQ1. Calculate the relative formula mass of water, $\mathrm{H}_{2} \mathrm{O}$.
(Relative atomic masses: $\mathrm{H}=1.0, \mathrm{O}=16)=(1.0 \times 2)+16.0=18.0$

Q2. Calculate the relative formula mass of iron chloride, FeCl_{3}.

$$
\text { (Relative formula masses: } \mathrm{Cl}=35.5, \mathrm{Fe}=56)=56+(35.5 \times 3)=162.5
$$

Q3. Calculate the relative formula mass of $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$. RAM $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16$

$$
=(12.0 \times 16)+(1.0 \times 12)+(14.0 \times 2)+16.0=248.0
$$

Q4. Calculate the relative formula mass of calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$.
(Relative atomic masses: $\mathrm{Ca}=40 ; \mathrm{O}=16, \mathrm{H}=1$)

$$
=40.1+2 x(16.0+1)=74.1
$$

Q5. Calculate the relative formula mass of magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$.
(relative atomic masses: $\mathrm{Mg}=24, \mathrm{~N}=14, \mathrm{O}=16$)

$$
=24.3+2 \times(14.0+16.0 \times 3)=148.3
$$

2-Calculating Concentration

$$
\text { Concentration }=\frac{\text { mass }}{\text { volume }}
$$

To use this triangle, cover up the part you are looking for.

2-Calculating Concentration

Concentration $=\frac{\text { mass }}{\text { volume }}$

Example:

What is the concentration of a solution made from 25.0 g of sodium hydroxide and $100.0 \mathrm{dm}^{3}$ of water?

$$
\text { Concentration }=\frac{25.0}{100.0}=0.250 \mathrm{~g} / \mathrm{dm}^{3}
$$

You try:

1. Calculate the concentration of a solution made from 10.0 g of sodium hydroxide and $200.0 \mathrm{dm}^{3}$ of water.
2. What is the concentration of a solution made from 2.50 g of sodium chloride and $12.0 \mathrm{dm}^{3}$ of water?
3. How many grams are needed to make $500.0 \mathrm{dm}^{3}$ of solution of potassium hydroxide with a concentration of $5.00 \mathrm{~g} / \mathrm{dm}^{3}$?
4. What volume of water is needed to make a solution $7.00 \mathrm{~g} / \mathrm{dm}^{3}$ solution from 2.00 g of sodium carbonate?
5. What is the concentration in $\mathrm{g} / \mathrm{dm}^{3}$ of a solution made from 0.900 g of sugar and $25.0 \mathrm{~cm}^{3}$ of water?

You try:
 2-Calculating Concentration - Answers

1. Calculate the concentration of a solution made from 10.0 g of sodium hydroxide and $200.0 \mathrm{dm}^{-3}$ of water.

$$
\text { Concentration }=\frac{10.0}{200.0}=0.0500 \mathrm{~g} / \mathrm{dm}^{3}
$$

2. What is the concentration of a solution made from 2.50 g of sodium chloride and $12.0 \mathrm{dm}^{3}$ of water?

$$
\text { Concentration }=\frac{2.50}{12.0}=0.210 \mathrm{~g} / \mathrm{dm}^{3}
$$

3. How many grams are needed to make $500.0 \mathrm{dm}^{3}$ of solution of potassium hydroxide with a concentration of $5.00 \mathrm{~g} / \mathrm{dm}^{3}$?

$$
\text { Mass }=\text { concentration } \times \text { volume }=5.00 \times 500.0=2500 \mathrm{~g}
$$

4. What volume of water is needed to make a solution $7.00 \mathrm{~g} / \mathrm{dm}^{3}$ solution from 2.00 g of sodium carbonate? \quad Volume $=\frac{\text { mass }}{\text { concentration }}=\frac{2.00}{7.00 \mathrm{~g}}=0.285 \mathrm{dm}^{3}$
5. What is the concentration in $\mathrm{g} / \mathrm{dm}^{3}$ of a solution made from 9.00 g of sugar and $25.0 \mathrm{~cm}^{3}$ of water?

$$
\text { Concentration }=\frac{9.00}{25.0} \times 1000=360 \mathrm{~g} / \mathrm{dm}^{3}
$$

3-Using Avogadro's Constant

Calculating the number of particles:
To calculate the number of particles, multiply the number of moles by 6.02×10^{23}.

How many particles?

1. 2 moles of carbon
particles $=$ moles $\times 6.02 \times 10^{23}=2 \times 6.02 \times 10^{23}=1.204 \times 10^{24}$
2. 0.04 moles of CO_{2}
particles $=$ moles $\times 6.02 \times 10^{23}=0.04 \times 6.02 \times 10^{23}=2.408 \times 10^{22}$
3. 0.5 moles of HCl

$$
\text { particles }=\text { moles } \times 6.02 \times 10^{23}=0.5 \times 6.02 \times 10^{23}=3.01 \times 10^{23}
$$

3-Using Avogadro's Constant

Calculating the number of moles:
To calculate the number of moles, divide the number of particles by 6.02×10^{23}.
How many moles?

1. 1000 molecules of oxygen

$$
\text { moles }=\frac{\text { particles }}{6.02 \times 10^{23}}=\frac{1000}{6.02 \times 10^{23}}=1.66 \times 10^{-21}
$$

2. $2,000,000$ molecules of hydrogen
3. 3.00×10^{25} atoms of helium $=\frac{\text { particles }}{6.02 \times 10^{23}}=\frac{2,000,000}{6.02 \times 10^{23}}=3.32 \times 10^{-18}$

$$
\text { moles }=\frac{\text { particles }}{6.02 \times 10^{23}}=\frac{3.00 \times 10^{25}}{6.02 \times 10^{23}}=498
$$

4-The Moles Triangle

moles $=\frac{\text { mass }}{\text { RFM/RAM }}$

To use this triangle, cover up the part you are looking for.

4-Using the Moles Triangle:

Bronze: How many moles in . . .?

1. $\quad 12.0 \mathrm{~g}$ of Mg (RAM of $\mathrm{Mg}=24.3$)
2. 2.00 g of H_{2} (RAM of $\mathrm{H}=1.0$)
3. 51.0 g of NH_{3} (RAM of $\mathrm{H}=1.0, \mathrm{~N}=14.0$)

Silver: How many grams in . . .?

1. 1.00 mole of carbon (RAM of $\mathrm{C}=12.0$)

I You have to learn
Ithis triangle
2. 0.200 moles of CO_{2} (RAM of $\mathrm{C}=12.0, \mathrm{O}=16.0$)
3. 0.500 moles of $\mathrm{HCl}($ RAM of $\mathrm{H}=1.0, \mathrm{Cl}=35.5)$

Gold: How many particles in . . .?

1. 3.00 g of Mg (RAM of $\mathrm{Mg}=24.3$)
2. 0.500 g of Water, $\mathrm{H}_{2} \mathrm{O}(\mathrm{RAM}$ of $\mathrm{H}=1.0, \mathrm{O}=16.0)$

4-Using the Moles Triangle:

Bronze: How many moles in . . .?

1. 12.0 g of $\mathrm{Mg}(\mathrm{RAM}$ of $\mathrm{Mg}=24.3)$ moles $=\frac{\text { mass }}{\text { RAM }}=\frac{12.0}{24.3}=0.494$
2. 2.00 g of $\mathrm{H}_{2}(\mathrm{RAM}$ of $\mathrm{H}=1.0)$ moles $=\frac{\text { mass }}{\mathrm{RFM}}=\frac{2.00}{2.0}=1.0$
3. 51.0 g of NH_{3} (RAM of $\mathrm{H}=1.0, \mathrm{~N}=14.0$)

$$
\text { moles }=\frac{\text { mass }}{\text { RFM }}=\frac{51.0}{17.0}=3.00
$$

4-Using the Moles Triangle:

Silver: How many grams in . . .?

1. 1.00 mole of carbon (RAM of $\mathrm{C}=12.0$)

$$
\text { mass }=\text { moles } \times \text { RAM }=1.00 \times 12.0=12.0 g
$$

2. 0.200 moles of CO_{2} (RAM of $\mathrm{C}=12.0, \mathrm{O}=16.0$)
mass $=$ moles \times RFM $=0.200 \times 44.0=8.80 g$
3. 0.500 moles of $\mathrm{HCl}(\mathrm{RAM}$ of $\mathrm{H}=1.0, \mathrm{Cl}=35.5)$

$$
\text { mass }=\text { moles } \times \text { RFM }=0.500 \times 36.5=18.3 / 18.25 \mathrm{~g}
$$

4-Using the Moles Triangle:

Gold: How many particles in . . .?

1. $\quad 3.00 \mathrm{~g}$ of Mg (RAM of $\mathrm{Mg}=24.3$)

Step 1: Calculate moles:

$$
\text { moles }=\frac{\text { mass }}{\text { RAM }}=\frac{3.00}{24.3}=0.123
$$

Step 2: Use Avogadro's Constant to calculate particles

$$
\text { particles }=\text { moles } \times 6.02 \times 10^{23}=0.125 \times 6.02 \times 10^{23}=7.53 \times 10^{22}
$$

2. 0.500 g of Water, $\mathrm{H}_{2} \mathrm{O}$ (RAM of $\mathrm{H}=1.0, \mathrm{O}=16.0$)

$$
\text { moles }=\frac{\operatorname{mass}}{\mathrm{RFM}}=\frac{0.500}{18.0}=0.0278
$$

particles $=$ moles $\times 6.02 \times 10^{23}=0.0278 \times 6.02 \times 10^{23}=1.67 \times 10^{22}$

4-Exam Questions

Q3. 1.27 g of copper were produced in an experiment. Calculate the number of moles of copper, Cu , produced in this experiment. (Relative atomic mass: $\mathrm{Cu}=63.5$)
0.0200
amount of copper produced $=$

Q2. Glucose has the formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. Calculate the number of moles in a 0.250 g sample.
(relative atomic masses: $\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$)

$$
\text { RFM }=180.0
$$

Moles $=0.00139$

5-The Molarity Triangle

Concentration in moles/dm ${ }^{3}$ (molarity, M) can be calculated using the following triangle:

5-Using the Molarity Triangle:

Bronze: What is the concentration in $\mathrm{mol} / \mathrm{dm}^{3}$ of:

1. 0.500 moles of hydrochloric acid in $1.00 \mathrm{dm}^{3}$ of water
2. 1.50 moles of sodium carbonate in $0.500 \mathrm{dm}^{3}$ of water

Silver: How many moles in?

1. $0.250 \mathrm{dm}^{3}$ of a $0.0500 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of sulfuric acid
2. $0.500 \mathrm{dm}^{3}$ of a $2.00 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of sodium hydroxide?

Gold: Calculate ...

1. The concentration in mole/dm ${ }^{3}$ from 0.750 moles of copper sulphate in $500.0 \mathrm{~cm}^{3}$ of water.
2. The number of moles of ethanoic acid in $25.0 \mathrm{~cm}^{3}$ of a 1.50 $\mathrm{mol} / \mathrm{dm}^{3}$ solution

Bronze: What is the concentration in moles/dm ${ }^{3}$ of:

1. 0.500 moles of hydrochloric acid in $1.00 \mathrm{dm}^{3}$ of water

$$
\mathrm{c}=\frac{\text { moles }}{\text { volume }}=\frac{0.500}{1.00}=0.500 \mathrm{~mol} / \mathrm{dm} 3
$$

2. 1.50 moles of sodium carbonate in $0.5 \mathrm{dm}^{3}$ of water

Silver: How many moles in?

$$
\mathrm{c}=\frac{\text { moles }}{\text { volume }}=\frac{1.50}{0.500}=3.00 \mathrm{~mol} / \mathrm{dm} 3
$$

1. $0.250 \mathrm{dm}^{3}$ of a $0.0500 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of sulfuric acid

$$
\text { moles }=c \times \text { volume }=0.0500 \times 0.250=0.0125 \text { moles }
$$

2. $0.500 \mathrm{dm}^{3}$ of a $2.00 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of sodium hydroxide?

$$
\text { moles }=\mathrm{c} \times \text { volume }=2.00 \times 0.500=1.00 \text { mole }
$$

Gold: Calculate . . .

1. The concentration in mole/dm ${ }^{3}$ from 0.750 moles of copper sulfate in $500.0 \mathrm{~cm}^{3}$ of water.

$$
\mathrm{c}=\frac{\text { moles }}{\text { volume }}=\frac{0.750}{0.500}=1.50 \mathrm{~mol} / \mathrm{dm} 3
$$

2. The number of moles of ethanoic acid in $25.0 \mathrm{~cm}^{3}$ of a 1.50 $\mathrm{mol} / \mathrm{dm}^{3}$ solution

$$
\text { moles }=\mathrm{c} \times \text { volume }=1.50 \times 0.0250=0.0375 \text { moles }
$$

6-Converting from mole/dm ${ }^{3}$ to $\mathrm{g} / \mathrm{dm}^{3}$

To convert from $\mathrm{mol} / \mathrm{dm}^{3} \rightarrow \mathrm{~g} / \mathrm{dm}^{3}$

Multiply the concentration by the RFM/RAM.

What is the concentration in $\mathrm{g} / \mathrm{dm}^{3}$ of:
1 Tip: keep the dm^{3} and treat this as a moles to
i grams calculation

1. A $2.00 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of $\mathrm{HCl}(\mathrm{RAM} \mathrm{H}=1.0, \mathrm{Cl}=35.5)$

$$
\mathrm{g} / \mathrm{dm}^{3}=\mathrm{mol} / \mathrm{dm}^{3} \times \mathrm{RFM}=2.00 \times 36.5=73.0 \mathrm{~g} / \mathrm{dm}^{3}
$$

2. A $0.750 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of $\mathrm{NaOH}(\mathrm{RAM} \mathrm{H}=1.0, \mathrm{O}=16.0, \mathrm{Na}=23.0)$

$$
\mathrm{g} / \mathrm{dm}^{3}=\mathrm{mol} / \mathrm{dm}^{3} \times \mathrm{RFM}=0.750 \times 40.0=30.0 \mathrm{~g} / \mathrm{dm}^{3}
$$

3. A $0.0500 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of $\mathrm{NaCl}(\mathrm{RAM} \mathrm{Na}=23.0$, $\mathrm{Cl}=35.5$)

$$
\mathrm{g} / \mathrm{dm}^{3}=\mathrm{mol} / \mathrm{dm}^{3} \times \mathrm{RFM}=0.0500 \times 58.5=2.93 \mathrm{~g} / \mathrm{dm}^{3}
$$

6-Converting from $\mathrm{g} / \mathrm{dm}^{3}$ to mole $/ \mathrm{dm}^{3}$

To convert the concentration from $\mathrm{g} / \mathrm{dm}^{3} \rightarrow \mathrm{~mol} / \mathrm{dm}^{3}$:

You divide by the RFM/RAM

What is the concentration in $\mathrm{mol} / \mathrm{dm}^{3}$ of ?

1. $\mathrm{A} 2.00 \mathrm{~g} / \mathrm{dm}^{3}$ solution of magnesium chloride, MgCl_{2} (RAM Mg=24.3, $\mathrm{Cl}=35.5$)

$$
\mathrm{mol} / \mathrm{dm}^{3}=\frac{\mathrm{grams} / \mathrm{dm}^{3}}{\mathrm{RFM}}=\frac{2.00}{95.3}=0.0210 \mathrm{~mol} / \mathrm{dm}^{3}
$$

2. $A 5.00 \mathrm{~g} / \mathrm{dm}^{3}$ solution of KOH (RAM $K=39.1, \mathrm{O}=16.0$, $\mathrm{H}=1.0$)

$$
\mathrm{mol} / \mathrm{dm}^{3}=\frac{\mathrm{g} / \mathrm{dm}^{3}}{\mathrm{RFM}}=\frac{5.00}{56.1}=0.0891 \mathrm{~mol} / \mathrm{dm}^{3}
$$

7-Calculating the Concentration of an Unknown

A variety of methods can be used for this. A method will be taught in the first term that develops the understanding needed to tackle the wide variety of A Level calculations

8-Molecular v. Empirical formula

This model shows a molecule of ethane. The black circles represent carbon (C) and the white circles are hydrogen (H).

Key Words:

The molecular formula is the actual number of atoms in the molecule.
The empirical formula is the simplest whole number ratio formula of a compound.

Extension: What is the molecular formula of the molecule shown above? What is its empirical formula?

8-Finding the empirical formula

Example: What is the empirical formula of $\mathrm{H}_{2} \mathrm{O}_{2}$?
Answer: Divide everything by the smallest number in the formula - in this case 2. Dividing through by 2 gives HO. (each element appears once)
TASK: Find the empirical formulas of the following:
2. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad \mathrm{CH}_{2} \mathrm{O}$
3. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{CH}_{2}$
4. $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{2} \mathrm{O}$
5. $\mathrm{H}_{4} \mathrm{C}_{4} \mathrm{O}_{8} \quad \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
6. $\mathrm{P}_{4} \mathrm{O}_{10} \quad \mathrm{P}_{2} \mathrm{O}_{5}$

$$
\begin{array}{ll}
\text { 7. } \mathrm{Ca}(\mathrm{OH})_{2} & \mathrm{CaO}_{2} \mathrm{H}_{2} \\
\text { 8. }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} & \mathrm{~N}_{2} \mathrm{H}_{8} \mathrm{CO}_{3} \\
\text { 9. } \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} & \mathrm{MgN}_{2} \mathrm{O}_{6}
\end{array}
$$

8-Exam Questions

Q1. The formula of a molecule of ethane is $\mathrm{C}_{2} \mathrm{H}_{6}$. Give the empirical formula of ethane. (1)

To calculate the empirical formula, divide by the smallest number in the formula (2). This gives CH_{3}.

Q2. The formula of ammonium sulfate is $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$. What is the empirical formula of ammonium sulfate?
\square A NHSO
\square B $\mathrm{NH}_{2} \mathrm{SO}_{2}$
\square C $\mathrm{NH}_{4} \mathrm{SO}_{4}$
■ D $\mathrm{N}_{2} \mathrm{H}_{8} \mathrm{SO}_{4}$

9-Calculating the molecular formula from the empirical formula

Example: The empirical formulae of a compound is
$\mathrm{CH}_{2} \mathrm{O}$. The relative formula mass for the molecular formula is 180.0. What is the molecular formula?
Must show working of the following steps:
Step 1: Calculate the relative formula mass for the empirical formula $\mathrm{CH}_{2} \mathrm{O}$:
RFM $=12.0+(2 \times 1.0)+16.0=30.0$
Step 2: Divide the molecular RFM by the empirical RFM 180.0/30.0 = 6

Step 3: Multiply the empirical formula by that number Molecular formula $=6 \mathrm{xCH}_{2} \mathrm{O}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

9-Calculating the molecular formula from the

 empirical formula1. The empirical formulae of a compound is AlCl_{3}. The relative formula mass for the molecular formula is 267.0. What is the molecular formula? $\mathrm{Al}_{2} \mathrm{Cl}_{6}$
2. The empirical formula of a hydrocarbon was CH_{2}. Find the molecular formula is the relative formula mass is 28.0. (RAM $\mathrm{H}=1.0, \mathrm{C}=12.0$) $\quad \mathrm{C}_{2} \mathrm{H}_{4}$
3. The empirical formula of a hydrocarbon was CH . Find the molecular formula is the relative formula mass is 78.0. (RAM $\mathrm{H}=1.0, \mathrm{C}=12.0$). $\quad \mathrm{C}_{6} \mathrm{H}_{6}$
4. The empirical formula of adipic acid is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$. The RFM is 146 g . Calculate the molecular formula. (RAM H=1.0, C=12.0, $\mathrm{O}=16.0$).
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$

9-Calculating the molecular formula from the empirical formula

Question: The empirical formulae of a compound is AlCl_{3}. The relative formula mass for the molecular formula is 267 . What is the molecular formula?

Step 1: Calculate the relative formula mass of AlCl_{3} : RFM $=27.0+(3 \times 35.5)=133.5$
Step 2: Divide the molecular RFM by the empirical RFM 267.0/133.5 = 2

Step 3: Multiply the empirical formula by that number Molecular formula $=2 \times \mathrm{AlCl}_{3}=\mathrm{Al}_{2} \mathrm{Cl}_{6}$

10-Calculating the Empirical Formula

Example: A compound of aluminium chloride contained 0.135 g of aluminium and 0.533 g of chlorine. What is its empirical formula? (relative atomic mass (RAM) of $\mathrm{Al}=27, \mathrm{Cl}=35.5$)

Substance	Aluminium Chloride	
1. Elements	AI	Cl
2. $\frac{\text { Mass }}{\text { RAM }}$	$\frac{0.135 \mathrm{~g}}{27}=0.005$	$\frac{0.533}{35.5}=0.015$
3. Divide by the smaller or smallest number	$\frac{0.005}{0.005}=1$	$\frac{0.015}{0.005}=3$
4. Ratio		
5. Formula (must give this in the end)	AlCl_{3}	

10-Exam Questions

Q1. In an experiment, 3.1 g of phosphorus reacted with 24 g of bromine to form phosphorus bromide. Calculate the empirical formula of the phosphorus bromide.

You must show your working. (relative atomic masses: $\mathrm{P}=31, \mathrm{Br}=80$)

$$
\mathrm{PBr}_{3}
$$

empirical formula

Q2. An oxide of lead was analysed.
0.414 g of lead was combined with 0.064 g of oxygen in this oxide.

Calculate the empirical formula of this lead oxide. (relative atomic masses: $\mathrm{O}=16, \mathrm{~Pb}=207$)

$$
\text { empirical formula . . . } \mathrm{PbO}_{2}
$$

Q3. A sample of calcium bromide contains 0.2 g calcium and 0.8 g bromine by mass. Calculate the empirical formula of calcium bromide. (relative atomic masses: $\mathrm{Ca}=$ $40, \mathrm{Br}=80$)

Q4. 14.3 g of an oxide of copper contained 12.7 g of copper.
Calculate the empirical formula of this oxide.
Show your working.
(Relative atomic masses: $\mathrm{Cu}=63.5, \mathrm{O}=16$)

```
Cu2O
answer =
```


10-Writing a Balanced Equation

Example: 3.18 g of copper reacted with 0.800 g of oxygen to form a copper oxide. (Atomic Mass Cu=63.5: $0=16.0$) Use this information to determine the balanced equation for this reaction.

1. Calculate the empirical formula of the product.

$$
\mathrm{Cu}=\frac{3.18}{63.5}=0.0501 \quad \mathrm{O}=\frac{0.800}{16.0}=0.0500 \quad \begin{aligned}
& \text { Ratio 1:1 } \\
& \mathrm{CuO}
\end{aligned}
$$

2. Write a symbol equation for the reaction:
$\mathrm{Cu}+\mathrm{O}_{2} \rightarrow \mathrm{CuO}$
3. Balance!
$2 \mathrm{Cu}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CuO}$

10-Exam Question - writing an equation

When iron wool is heated in bromine vapour, it reacts to form iron bromide.
In an experiment, 5.60 g of iron reacted exactly with 24.0 g of bromine, Br_{2}.
[relative atomic masses: $\mathrm{Fe}=56.0, \mathrm{Br}=80.0$]
Determine, using this information, the balanced equation for the reaction between iron and bromine.
You must show your working.

Question number	Answer	Additional guidance	Mark
	- calculates mol of $\mathrm{Fe}(1)$ - calculates mol of $\mathrm{Br}^{2}(1)$ - determines simplest ratio/LHS of equation (1) - deduces formula of iron bromide produced/RHS of equation (1) OR - divides mass by relative atomic mass (1) - simplest ratio (1) - empirical formula (1) - deduces LHS to obtain balanced equation (1)	Example of calculation$\begin{aligned} & \mathrm{mol} \mathrm{Fe}=\frac{5.6}{56}=0.1 \\ & \mathrm{~mol} \mathrm{Br}_{2}=\frac{24}{(2 \times 80)}= \\ & 0.15 \\ & \text { ratio } \mathrm{Fe}: \mathrm{Br}_{2}=2: 3 / \\ & 2 \mathrm{Fe}+3 \mathrm{Br}_{2} \\ & 2 \mathrm{FeBr}_{3} / \mathrm{Fe}_{2} \mathrm{Br}_{6} \end{aligned}$Fe Br $\frac{5.6}{56}$ $:$ $\frac{24}{80}$ 0.1 $:$ 0.3 1 $:$ 3 FeBr_{3} $2 \mathrm{Fe}+3 \mathrm{Br}_{2} \rightarrow 2 \mathrm{FeBr}_{3}$	This is the method you can use based on the prior slides (4)

11-Calculating the Empirical Formula

Example: An oxide of magnesium, X , has the following percentage composition by mass: $\mathrm{Mg}, 60 \%$; $\mathrm{O} 40 \%$.
Calculate the empirical formula of X (relative atomic mass (RAM) of $O=16$,
$\mathrm{Mg}=24) \quad$ Tip: Treat the \% exactly how you treated the masses in calculation 10

Substance	Magnesium Oxide		
1. Elements	Mg		0
2. $\frac{\text { Mass }}{\text { RAM }}$	$\frac{60}{24.3}=2.47$		$\frac{40}{16.0}=2.5$
3. Divide by the smaller number	$\frac{2.47}{2.47}=1$		$\frac{2.5}{2.47}=1.01 \approx 1$
4. Ratio	1:1		
5. Formula	MgO		

11-Calculating the Empirical Formula

1. An hydrocarbon, \mathbf{Z}, has the following percentage composition by mass: C, 80\%; H 20\%. Calculate the empirical formula of \mathbf{X} (RAM of $\mathrm{H}=1.0, \mathrm{C}=12.0$)
```
CH
```

2. Silver nitrate has the following percentage composition by mass: Ag, 63.5\%; N, 8.2\%; O, 28.3\%. Calculate the empirical formula. RAM of $\mathrm{Ag}=107.9, \mathrm{~N}=14.0, \mathrm{O}=16.0$)

$$
\mathrm{AgNO}_{3}
$$

12-The Law of Conservation of Mass

The total mass of products at the end of the reaction is equal to the total mass of
 the reactants at the beginning.

12-Exam Questions

Q1. Dilute hydrochloric acid reacts with silver nitrate solution to form silver chloride and nitric acid. This apparatus is used to investigate the mass of the reactants and the mass of products in this reaction.

The total mass of this apparatus was measured.
The flask was shaken to allow the silver nitrate solution and dilute hydrochloric acid to react.
After the reaction the total mass of the apparatus was measured again.
State how the total mass of the apparatus after the reaction will compare with the total mass of the apparatus before the reaction.

Q2. When calcium carbonate is heated strongly it undergoes thermal decomposition.

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

2.50 g of calcium carbonate was heated strongly.
1.40 g of solid remained after heating.

Calculate the mass of carbon dioxide produced during this reaction.
The mass of the products = mass of the reactants. So $2.50=1.40+$ mass of CO_{2}
Mass of CO $2=2.50-1.40=1.10 \mathrm{~g}$

12-Exam Questions

Q3. Propene can be made by cracking fractions obtained from crude oil.
This equation shows the cracking of decane to produce propene and butane.

$$
\underset{\text { decane }}{\mathrm{C}_{10} \mathrm{H}_{22}} \rightarrow \underset{\text { propene }}{2 \mathrm{C}_{3} \mathrm{H}_{6}}+\quad+\quad \begin{aligned}
& \mathrm{C}_{4} \mathrm{H}_{10} \\
& \text { butane }
\end{aligned}
$$

Give the total mass of products formed if 17 g of decane is cracked in this way.
The mass products $=$ mass of reactants $=17 \mathrm{~g}$

Q4. A mixture of copper oxide and carbon powder was heated. Carbon dioxide was produced. It was bubbled into limewater.

The word equation for the reaction is
copper oxide + carbon \rightarrow copper + carbon dioxide
The mass of test tube X and its contents was measured before heating and after heating.
There was a change in mass.
Explain why the total mass of the test tube and contents changes during the reaction.
The decreased (got smaller) because the CO_{2} escaped from the test tựbe

13-Reacting Mass Calculations

A variety of methods can be used for this. A method will be taught in the first term that develops the understanding needed to tackle the wide variety of A Level calculations

The Parts of a Burger

-Only 3 burgers can be made.
-The limiting reagent is the lettuce leaves.

Question 1

How many burgers can be made?

Which part is the limiting reagent?
The part will be all used up, has no left overs.

14-What is a limiting reagent?

The limiting reagent is the reactant will all react. The amount of product you make depends of how much of the limiting reagent you have.
It is not necessarily the least amount you have, such as the lettuce, there are six pieces but you need two in each burger, despite there are less burgers and buns, the amount of burger made is still limited by the amount of lettuce.

The reactant that has some left after a reaction is said to be in excess.

You could be asked to find the limiting reagent or the reagent in excess.

14-Finding the Limiting Reagent

To find the limiting reagent (or the reagent in excess) compare the moles of both reactants; divide the moles by the mole ration number in the balanced equation and see which is greater.

To find the moles, you will have to use one of the triangles at the beginning of this powerpoint such as:

14-Finding the Limiting Reagent

Example 1: Carbon reacts with oxygen to form carbon dioxide:
If 1.00 g of carbon reacts with 1.00 g of oxygen, which is the limiting reagent? Which is in excess?

$$
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}
$$

Mole ratio 1 1

Moles

$$
\frac{1.00}{12.0}=0.083 \quad \frac{1.00}{32.0}=0.0300
$$

mole
$\overline{\text { mole ratio }} 0.083 \quad 0.0300$

Use this triangle to find moles

Answer: Oxygen is the limiting reagent (smaller/smallest mole/mole ratio value) and Carbon is in excess

14-Finding the Limiting Reagent

Example 2: Sulphuric acid and sodium hydroxide neutralise each other.
If $1.0 \mathrm{dm}^{3}$ of $0.30 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{H}_{2} \mathrm{SO}_{4}$ reacts with $1.0 \mathrm{dm}^{3}$ of 0.50 $\mathrm{mol} / \mathrm{dm}^{3} \mathrm{NaOH}$, which is the limiting reagent? Which is in excess?

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

Mole ratio 1
Mole $\quad 1.0 \times 0.30=0.30 \quad 1.0 \times 0.50=0.50$ mole $0.30 / 1=0.30$ $0.50 / 2=0.25$
mole ratio
Answer: NaOH is the limiting reagent and HCl is in excess Use this triangle to find moles

NB: Discard mole/mole ratio value for further calculations, go back to use the moles above it for further calculations! This is crucial!

14-Finding the Limiting Reagent

1. What is the limiting reagent when 5.09 g of Fe reacts with 5.00 g of S to form iron sulphide?
$\mathrm{Fe}+\mathrm{S} \rightarrow \mathrm{FeS}$ (RAM of $\mathrm{Fe}=55.8, \mathrm{~S}=32.1$)

Answer: Iron is the limiting reagent and sulfur is in excess
2. What is the limiting reagent when $5.0 \mathrm{dm}^{3}$ of $0.25 \mathrm{~mol} / \mathrm{dm}^{3}$ of HCl reacts with $2.0 \mathrm{dm}^{3}$ of 0.5 $\mathrm{mol} / \mathrm{dm}^{3} \mathrm{NaOH}$?
$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

15-Calculating Percent Yield

actual yield
 percent y ield $=\frac{}{\text { thender }} \times 100 \%$ theoretical y ield

Questions:

1. What is the percentage yield of a reaction where the theoretical yield was 75 kg but the actual yield was 68 kg ?

$$
\text { percent y ield }=\frac{\text { actual yield }}{\text { theoretical y ield }} \times 100 \%=\frac{68}{75} \times 100=91 \%
$$

2. During a practical a student made 30 g of product, but the theoretical yield was 40 g . What was the percentage yield?

$$
\text { percent y ield }=\frac{\text { actual yield }}{\text { theoretical y ield }} \times 100 \%=\frac{30}{40} \times 100=75 \%
$$

16-What is atom economy?

The atom economy of a chemical reaction is a measure of the amount of starting materials that become useful products.
$\%$ atom economy $=\frac{\text { total RFM of desired product }}{\text { total RFM mass of all products }} \times 100 \%$

16-How to calculate atom economy

Example: What is the atom economy for making hydrogen by reacting coal with steam?
$\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})$
STEP 1: Calculate the total RFM of the desired product $\left(\mathrm{H}_{2}\right)$: $\begin{aligned} & \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \quad \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \\ & 2 \times 2.0=4.0\end{aligned}$
STEP 2: Calculate the total RFM mass of products $\begin{aligned} & \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \\ & 44.0+2 \times 2.0=48.0\end{aligned}$
STEP 3: Put values into equation
$\%$ atom economy $=4.0 / 48.0 \times 100=8.30 \%$

16-Calculating atom economy

Questions:

1. Calculate the atom economy for making hydrogen from methane:
$\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}$ (RAM H=1.0, $\mathrm{C}=12.0, \mathrm{O}=16.0$)
STEP 1: Total RFM of desired product $=3 \times 2.0=6.0$
STEP 2: Total RFM of all products $=28.0+6.0=34.0$
STEP 3: Atom economy $=6.0 / 34.0 \times 100=17.6 \%$
2. What is the atom economy of this process to make ethanol?
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (RAM H=1.0, $\mathrm{C}=12.0, \mathrm{O}=16.0$)
Because there is only one product the atom economy will be 100\%
3. What is the atom economy of extracting iron from its ore?
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}(\mathrm{RAM} \mathrm{Fe}=55.8, \mathrm{C}=12.0, \mathrm{O}=16.0)$
STEP 1: Total RFM of desired product $=2 \times 56.0=111.8$
STEP 2: Total RFM of all products $=111.8+3 \times 44.0=243.8$
STEP 3: Atom economy $=111.8 / 243.8 \times 100=45.9 \%$

17-Using the molar volume

17-Calculating volume from moles

(NOT CORRECT SIG FIGS ARE GIVEN IN ANSWERS)
For all questions assumes it is room temperature and pressure (RTP), so the molar volume is $24 \mathrm{dm}^{3}$.

1. What is the volume of 1.5 moles of H , gas?

$$
\text { volume }=\text { moles } \times 24=1.5 \times 24=36 \mathrm{dm}^{3}
$$

2. What is the volume of . 25 moles of O , gas?

$$
\text { volume }=\text { moles } \times 24=0.25 \times 24=6 \mathrm{dm}^{3}
$$

3. How many moles of CO_{2} are there in $48 \mathrm{dm}^{3}$ of gas?

$$
\text { moles }=\frac{\text { volume }}{24}=\frac{48}{24}=2 \text { moles }
$$

4. How many moles of Cl_{2} are there in $2 \mathrm{dm}^{3}$ of gas?

Extension:

$$
\text { moles }=\frac{\text { volume }}{24}=\frac{2}{24}=0.083 \text { moles }
$$

1. How many grams of nitrogen are there in $10 \mathrm{dm}^{3}$ of nitrogen $\left(\mathrm{N}_{2}\right)$ gas? (RAM N = 14)

STEP 1: moles $=\frac{\text { volume }}{24}=\frac{10}{24}=0.417$ moles;
STEP 2: mass= moles X RFM $=11.7$
2. What is the volume of 1.2 g of Ne gas? $($ RAM $\mathrm{Ne}=20)$

$$
\text { STEP 1: } \text { moles }=\frac{\text { mass }}{R A M}=\frac{1.2}{20}=0.06 \text { STEP 2: Volume }=\text { moles } \times 24=1.44 \mathrm{dm}^{3}
$$

17-Gas Volumes and Reacting Masses

- Because the volume of gases is directly linked to the number of moles (and volume is the same for each gas), volumes can be used instead of moles in reacting mass calculations.

Example:
$\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$

If there is $10.0 \mathrm{dm}^{3}$ of Cl_{2}, then there needs to be $10.0 \mathrm{dm}^{3}$ of H_{2} to react completely with it. There would be $20.0 \mathrm{dm}^{3}$ of HCl made because the ratio is 2 to 1 .

17-Exam Questions

Q1. Sulfur trioxide is produced by reacting sulfur dioxide with oxygen.

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}
$$

What volume of oxygen, in cm^{3}, would react completely with $500 \mathrm{~cm}^{3}$ sulfur dioxide?

```
A \(500 \div 2\)
B 500
C \(500 \times 2\)
D \(500 \times 32\)
```

Q2. When nitrogen and hydrogen react to form ammonia, the reaction can reach a dynamic equilibrium.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Calculate the minimum volume of hydrogen required to completely convert $1000 \mathrm{dm}^{3}$ of nitrogen into ammonia.

Q3. Hydrogen reacts with oxygen to form water vapour.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

If $200 \mathrm{~cm}^{3}$ of hydrogen react completely with $100 \mathrm{~cm}^{3}$ of oxygen, what is the maximum volume of water vapour formed, if all volumes are measured at the same temperature and pressure?
A $100 \mathrm{~cm}^{3}$
B $200 \mathrm{~cm}^{3}$
C $300 \mathrm{~cm}^{3}$D $400 \mathrm{~cm}^{3}$

18-Isotopes \& Calculating Relative Atomic Mass

How to Calculate Relative Atomic Mass.
Example. 80% of Boron atoms are the Boron-11 isotope. 20% of Boron atoms are the Boron-10 isotope. What is the relative atomic mass of Boron?

```
Step 1: }(80\times11)+(20\times10)=108
Step 2: 1080 \div 100=\underline{10.8}
```


18-Isotopes \& Calculating Relative Atomic Mass

1. 75% of chlorine atoms are the ${ }^{35} \mathrm{Cl}$ isotope. 25% of chlorine atoms are the ${ }^{37} \mathrm{Cl}$ isotope. What is the relative atomic mass of chlorine?
2. Lithium has an atomic number of 3 . A sample of lithium is 7.6% Lithium-6 and 92.4% Lithium-7. Calculate the relative atomic mass of lithium.
3. Neon has an atomic number of 10. A sample of neon is 90.5% Neon-20. The rest of the sample is Neon-22. Calculate the relative atomic mass of neon.
4. A sample of iron contains 6% Iron-54, 92% Iron-56 and 2% Iron57. What is the relative atomic mass of iron in this sample? 55.9

19-Bond Energy Calculations

Example: Calculate the energy change when water is formed from H_{2} and O_{2}.
STEP 1 Bonds Broken

$$
{ }^{\mathrm{H}} \mathrm{O}^{\mathrm{H}}
$$

$2 \times(\mathrm{H}-\mathrm{H})=2 \times 436=872$
$1 \times(\mathrm{O}=0)=498$
Total $=872+498=1370$
STEP 2 Bonds formed
$4 \times(\mathrm{O}-\mathrm{H})=4 \times 464=1856$
STEP 3

$$
\begin{aligned}
& \mathrm{H}-\mathrm{H} \\
& \mathrm{H}-\mathrm{H}
\end{aligned}
$$

Bond	Bond Energy
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{H}-\mathrm{O}$	464
$\mathrm{O}=\mathrm{O}$	498

Energy change $=$ bonds broken - bonds formed (BB-BF)

$$
=1370-1856=-486
$$

The negative sign means its exothermic.

19-Exam Question

Q5. The energies of some bonds are shown in Figure 13.

bond	energy of bond /kJ mol
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{Cl}-\mathrm{Cl}$	243
$\mathrm{H}-\mathrm{Cl}$	432

Figure 13
Hydrogen reacts with chlorine to form hydrogen chloride.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})
$$

Calculate the energy change, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for the reaction of 1 mol of hydrogen gas, H_{2}, with 1 mol of chlorine gas, Cl_{2}, to form 2 mol of hydrogen chloride gas, HCl .

19-Exam Question -working

STEP 1 Bonds Broken
$1 \times(\mathrm{H}-\mathrm{H})=436$
$1 \times(\mathrm{Cl}-\mathrm{Cl})=243$
Total $=436+243=679$
STEP 2 Bonds Made
$2 \times(\mathrm{H}-\mathrm{Cl})=2 \times 432=864$
STEP 3
Energy change = bonds broken - bonds made

$$
=679-864=-185 \text { exothermic }
$$

