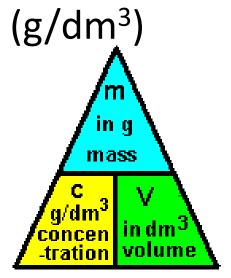

20 Key Calculations

- 1. <u>Relative Formula Mass</u>
- 2. <u>Concentration (g/dm³)</u>
- 3. Moles to Particles
- 4. Moles Triangle
- 5. <u>Concentration (mol/dm³)</u>
- 6. <u>Converting Concentration</u>
- 7. <u>Titration Calculation</u>
- 8. <u>Empirical Formula from</u> <u>Molecular Formula</u>
- 9. <u>Molecular Formula from</u> <u>Empirical Formula</u>
- 10. <u>Empirical Formula from</u> <u>Reacting Masses</u>

- 11. <u>Empirical Formula from</u> <u>%composition</u>
- 12. <u>Conservation of Mass</u>
- 13. <u>Reacting Masses</u>
- 14. Limiting Reagent
- 15. <u>% Yield</u>
- 16. <u>Atom Economy</u>
- 17. <u>Gas Volume</u>
- 18. <u>Isotope Calculation</u>
- 19. Bond Enthalpy

Equation Sheet – Combined Only

Moles Triangle

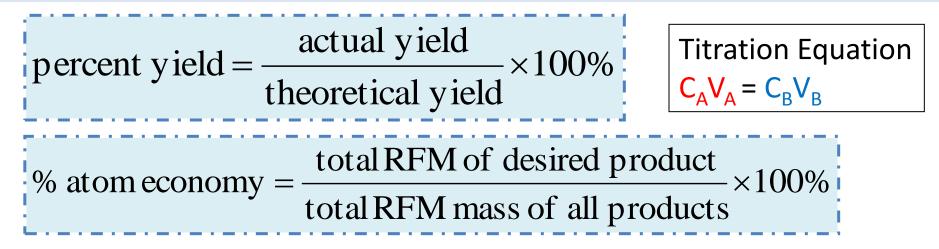


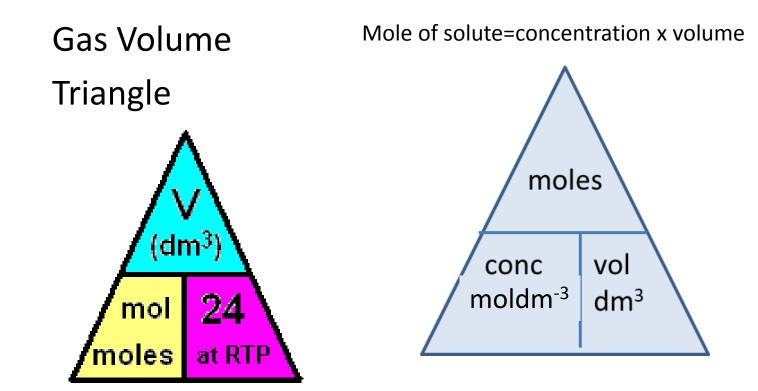
Empirical Formula Divide mass by RAM and then compare the ratios

Reacting Masses

Convert given mass to moles. Then convert moles to mass of unknown

Concentration




Bond Enthalpy

Energy change = bonds broken – bonds made

Relative Atomic Mass =
$$\frac{\%_1 \times \text{mass}_1 + \%_2 \times \text{mass}_2}{100}$$

Equation Sheet – Separate Chemistry Only

1-Relative Formula Mass

The <u>relative formula mass</u> (RFM) is calculated by adding together the atomic masses of all the atoms shown in the formula.

Example: Calculate the relative formula mass of ammonia, NH₃. The relative atomic masses are: H=1.0 and N=14.0)

<u>You try</u>:

- Bronze: Calculate the relative formula mass of O₂ (The relative atomic mass of O=16.0)
- <u>Silver</u>: Calculate the relative formula mass of NaNO₃ (The relative atomic mass of Na=23.0, N=14.0, O=16.0)
- <u>Gold</u>: Calculate the relative formula mass of $Mg(OH)_2$ (The relative atomic mass of Mg = 24.3, O=16.0, H=1.0)

1-Relative Formula Mass - Answers

Bronze: Calculate the relative formula mass of O_2 (The relative atomic mass of O=16.0) RFM= 2x16.0=32.0

<u>Silver</u>: Calculate the relative formula mass of NaNO₃ (The relative atomic mass of Na=23.1, N=14.0, O=16.0)

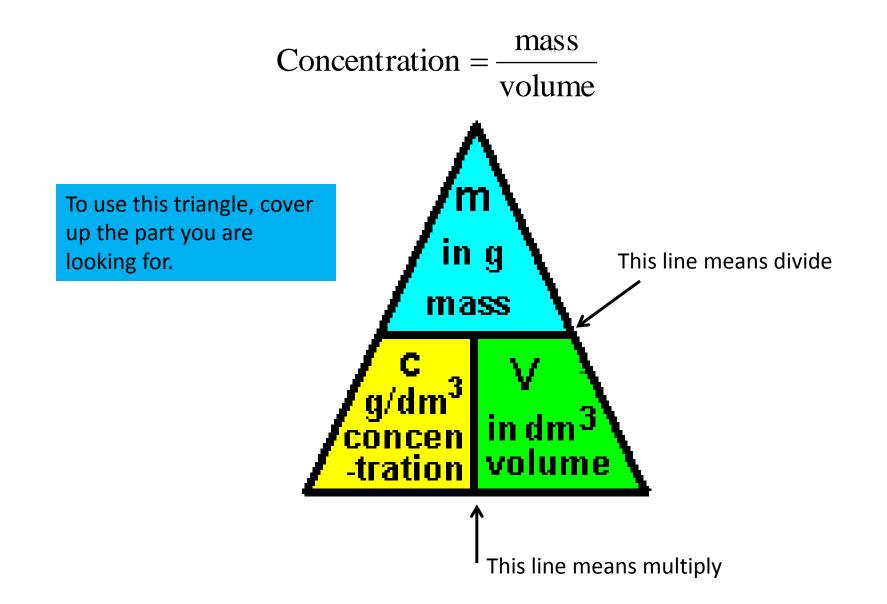
RFM= 23.0 + 14.0 + (3x16.0) =62.0

<u>Gold</u>: Calculate the relative formula mass of $Mg(OH)_2$ (The relative atomic mass of Mg = 24.3, O=16.0, H=1.0)

RFM = 24.3+ 2(16.0+1.0)=58.3

1-Calculating Relative Formula Mass

calculation using 1dp for Ar as required by A level


Q1. Calculate the relative formula mass of water, H_2O .

(Relative atomic masses: H = 1.0, O = 16) = (1.0x2) + 16.0 = 18.0

- **Q2.** Calculate the relative formula mass of iron chloride, FeCl₃. (Relative formula masses: Cl = 35.5, Fe = 56) = 56 + (35.5x3) = 162.5
- Q3. Calculate the relative formula mass of $C_{16}H_{12}N_2O$. RAM H=1, C=12, N=14, O=16 = (12.0x16) + (1.0x12) + (14.0x2) + 16.0 = 248.0
- **Q4.** Calculate the relative formula mass of calcium hydroxide, Ca(OH)₂. (Relative atomic masses: Ca = 40; O = 16, H=1) = 40.1 + 2x(16.0+1) = 74.1

Q5. Calculate the relative formula mass of magnesium nitrate, $Mg(NO_3)_2$. (relative atomic masses: Mg = 24, N = 14, O = 16) = 24.3 + 2x(14.0+16.0x3) = 148.3

2-Calculating Concentration

2-Calculating Concentration 2-Calculating Concentration Concentration = $\frac{\text{mass}}{\text{volume}}$ **Example**:

What is the concentration of a solution made from 25.0g of sodium hydroxide and 100.0 dm³ of water?

Concentration
$$=\frac{25.0}{100.0}=0.250g/dm^3$$

<u>You try</u>:

- 1. Calculate the concentration of a solution made from 10.0g of sodium hydroxide and 200.0 dm³ of water.
- 2. What is the concentration of a solution made from 2.50g of sodium chloride and 12.0 dm³ of water?
- 3. How many grams are needed to make 500.0 dm³ of solution of potassium hydroxide with a concentration of 5.00 g/dm³?
- 4. What volume of water is needed to make a solution 7.00g/dm³ solution from 2.00g of sodium carbonate?
- 5. What is the concentration in g/dm³ of a solution made from 0.900g of sugar and 25.0 cm³ of water?

You try: 2-Calculating Concentration - Answers

1. Calculate the <u>concentration</u> of a solution made from 10.0g of sodium hydroxide and 200.0 dm⁻³ of water.

Concentration =
$$\frac{10.0}{200.0}$$
 = 0.0500g / dm³

What is the <u>concentration</u> of a solution made from 2.50g of sodium chloride and 12.0 dm³ of water?

Concentration
$$=\frac{2.50}{12.0}=0.210g / dm^3$$

3. How many grams are needed to make 500.0 dm³ of solution of potassium hydroxide with a concentration of 5.00g/dm³?

 $Mass = concentration \times volume = 5.00 \times 500.0 = 2500g$

- 4. What <u>volume</u> of water is needed to make a solution 7.00g/dm³ solution from 2.00g of sodium carbonate? Volume = $\frac{\text{mass}}{\text{Volume}} = \frac{2.00}{\text{C}} = 0.285 \text{dm}^3$
- 5. What is the <u>concentration</u> in g/dm³ of a solution made from 9.00g of sugar and 25.0 cm³ of water? 9.00 $y_1000 = 260 g/dm^3$

Concentration =
$$\frac{9.00}{25.0}$$
 x1000 = 360g/dm³

concentration 7.00g

3-Using Avogadro's Constant

Calculating the number of particles:

You will be given this constant on your exam

To calculate the number of particles, multiply the number of moles by 6.02×10^{23} .

How many particles?

1. 2 moles of carbon

particles = moles $\times 6.02 \times 10^{23} = 2 \times 6.02 \times 10^{23} = 1.204 \times 10^{24}$

2. 0.04 moles of CO_2

particles = moles $\times 6.02 \times 10^{23} = 0.04 \times 6.02 \times 10^{23} = 2.408 \times 10^{22}$

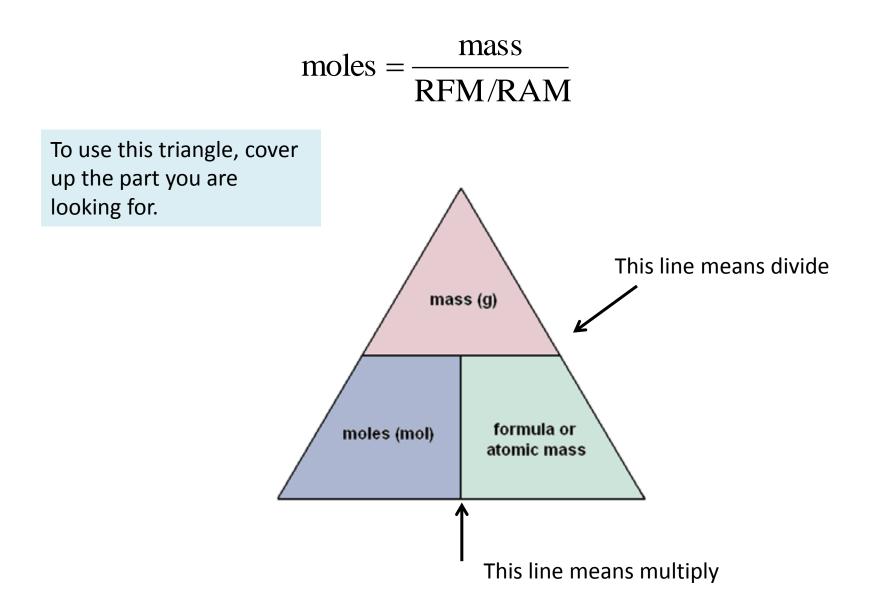
3. 0.5 moles of HCl

particles = moles $\times 6.02 \times 10^{23} = 0.5 \times 6.02 \times 10^{23} = 3.01 \times 10^{23}$

3-Using Avogadro's Constant

Calculating the number of moles:

You will be given this constant on your exam


To calculate the number of moles, divide the number of particles by 6.02×10^{23} .

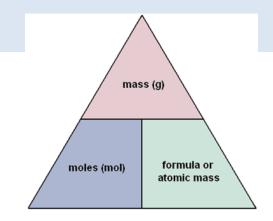
How many moles?

1. 1000 molecules of oxygen $moles = \frac{particles}{6.02 \times 10^{23}} = \frac{1000}{6.02 \times 10^{23}} = 1.66 \times 10^{-21}$ 2. 2,000,000 molecules of hydrogen $moles = \frac{particles}{6.02 \times 10^{23}} = \frac{2,000,000}{6.02 \times 10^{23}} = 3.32 \times 10^{-18}$ 3. 3.00 x 10²⁵ atoms of helium

moles =
$$\frac{\text{particles}}{6.02 \times 10^{23}} = \frac{3.00 \times 10^{25}}{6.02 \times 10^{23}} = 498$$

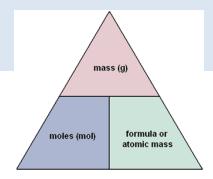
4-The Moles Triangle

Bronze: How many moles in . . .?


- 1. 12.0g of Mg (RAM of Mg=24.3)
- 2. 2.00g of H₂ (RAM of H=1.0)
- 3. 51.0g of NH_3 (RAM of H=1.0, N=14.0)

<u>Silver</u>: How many grams in . . .?

- 1. 1.00 mole of carbon (RAM of C=12.0)
- 2. 0.200 moles of CO₂ (RAM of C=12.0, O=16.0)
- 3. 0.500 moles of HCl (RAM of H=1.0, Cl=35.5)

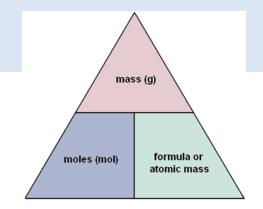

Gold: How many particles in . . .?

- 1. 3.00g of Mg (RAM of Mg =24.3)
- 2. 0.500g of Water, H₂O (RAM of H=1.0, O=16.0)

You have to learn this triangle

Bronze: How many moles in . . .?

1. 12.0g of Mg (RAM of Mg=24.3) moles = $\frac{\text{mass}}{\text{RAM}} = \frac{12.0}{24.3} = 0.494$


2. 2.00g of H₂ (RAM of H=1.0) moles =
$$\frac{\text{mass}}{\text{RFM}} = \frac{2.00}{2.0} = 1.0$$

3. 51.0g of NH_3 (RAM of H=1.0, N=14.0)

moles =
$$\frac{\text{mass}}{\text{RFM}} = \frac{51.0}{17.0} = 3.00$$

<u>Silver</u>: How many grams in . . .?

1. 1.00 mole of carbon (RAM of C=12.0) mass = moles \times RAM = 1.00 \times 12.0 = 12.0g

2. 0.200 moles of CO₂ (RAM of C=12.0, O=16.0)

mass = moles \times RFM = 0.200 \times 44.0 = 8.80g

3. 0.500 moles of HCl (RAM of H=1.0, Cl=35.5)

mass = moles \times RFM = 0.500 \times 36.5 = 18.3/18.25*g*

Gold: How many particles in . . .?

1. 3.00g of Mg (RAM of Mg =24.3)

<u>Step 1</u>: Calculate moles:

moles =
$$\frac{\text{mass}}{\text{RAM}} = \frac{3.00}{24.3} = 0.123$$

<u>Step 2</u>: Use Avogadro's Constant to calculate particles

particles = moles $\times 6.02 \times 10^{23} = 0.125 \times 6.02 \times 10^{23} = 7.53 \times 10^{22}$

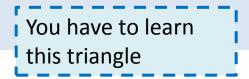
2. 0.500g of Water, H_2O (RAM of H=1.0, O=16.0)

moles =
$$\frac{\text{mass}}{\text{RFM}} = \frac{0.500}{18.0} = 0.0278$$

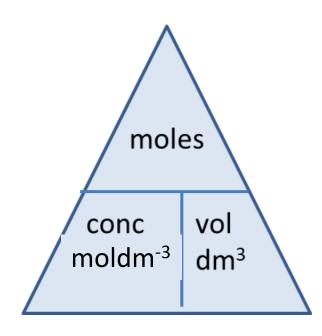
particles = moles $\times 6.02 \times 10^{23} = 0.0278 \times 6.02 \times 10^{23} = 1.67 \times 10^{22}$

4-Exam Questions

Q3. 1.27 g of copper were produced in an experiment. Calculate the number of moles of copper, Cu, produced in this experiment. (Relative atomic mass: Cu = 63.5)


Q2. Glucose has the formula $C_6H_{12}O_6$. Calculate the number of moles in a 0.250g sample.

(relative atomic masses: H=1.0, C=12.0, O=16.0)


RFM = 180.0

Moles = 0.00139

5-The Molarity Triangle

Concentration in moles/dm³ (molarity, M) can be calculated using the following triangle:

5-Using the Molarity Triangle:

Bronze: What is the concentration in mol/dm³ of:

- 1. 0.500 moles of hydrochloric acid in 1.00 dm³ of water
- 2. 1.50 moles of sodium carbonate in 0.500 dm³ of water

<u>Silver</u>: How many moles in?

- 1. 0.250 dm³ of a 0.0500 mol/dm³ solution of sulfuric acid
- 2. 0.500 dm³ of a 2.00 mol/dm³ solution of sodium hydroxide?

moles

vol

dm³

conc

moldm⁻³

You have to learn

this triangle

Gold: Calculate . . .

- The concentration in mole/dm³ from 0.750 moles of copper sulphate in 500.0 cm³ of water.
- The number of moles of ethanoic acid in 25.0 cm³ of a 1.50 mol/dm³ solution

Bronze: What is the concentration in moles/dm³ of:

- 0.500 moles of hydrochloric acid in 1.00 dm³ of water $c = \frac{\text{moles}}{\text{volume}} = \frac{0.500}{1.00} = 0.500 \text{ mol/dm3}$ 1.
- 1.50 moles of sodium carbonate in 0.5 dm³ of water 2.

$$c = \frac{moles}{volume} = \frac{1.50}{0.500} = 3.00 \text{ mol/dm3}$$

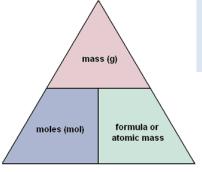
0.250 dm³ of a 0.0500 mol/dm³ solution of sulfuric acid 1.

 $moles = c \times volume = 0.0500 \times 0.250 = 0.0125 moles$

0.500 dm³ of a 2.00 mol/dm³ solution of sodium hydroxide? 2.

 $moles = c \times volume = 2.00 \times 0.500 = 1.00 mole$

Gold: Calculate . . .


- The concentration in mole/dm³ from 0.750 moles of copper 1. sulfate in 500.0 cm³ of water. $c = \frac{moles}{moles} = \frac{0.750}{mol/dm3} = 1.50 \text{ mol/dm3}$ volume 0.500
- The number of moles of ethanoic acid in 25.0 cm³ of a 1.50 2. mol/dm³ solution $moles = c \times volume = 1.50 \times 0.0250 = 0.0375 moles$

6-Converting from mole/dm³ to g/dm³

<u>To convert from mol/dm³ \rightarrow g/dm³</u>

Multiply the concentration by the RFM/RAM.

What is the concentration in g/dm³ of:

Tip: keep the dm³ and treat this as a moles to grams calculation

1. A 2.00 mol/dm³ solution of HCl (RAM H=1.0, Cl=35.5)

 $g/dm^3 = mol/dm^3 \times RFM = 2.00 \times 36.5 = 73.0g/dm^3$

2. A 0.750 mol/dm³ solution of NaOH (RAM H=1.0, O=16.0, Na=23.0)

 $g/dm^{3} = mol/dm^{3} \times RFM = 0.750 \times 40.0 = 30.0g / dm^{3}$

 A 0.0500 mol/dm³ solution of NaCl (RAM Na=23.0, Cl=35.5)

 $g/dm^3 = mol/dm^3 \times RFM = 0.0500 \times 58.5 = 2.93g/dm^3$

6-Converting from g/dm³ to mole/dm³

To convert the concentration from $g/dm^3 \rightarrow mol/dm^3$: You divide by the RFM/RAM Tip: Ignore the dm³

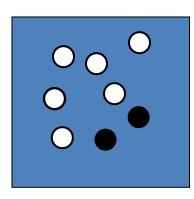
What is the concentration in mol/dm³ of ?

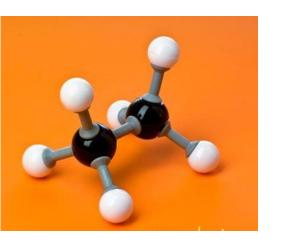
and treat this as a

grams to moles

calculation

$$mol/dm^{3} = \frac{grams/dm^{3}}{RFM} = \frac{2.00}{95.3} = 0.0210 mol/dm^{3}$$


 A 5.00g/dm³ solution of KOH (RAM K=39.1, O=16.0, H=1.0)


$$mol/dm^{3} = \frac{g/dm^{3}}{RFM} = \frac{5.00}{56.1} = 0.0891 mol/dm^{3}$$

7-Calculating the Concentration of an Unknown

A variety of methods can be used for this. A method will be taught in the first term that develops the understanding needed to tackle the wide variety of A Level calculations

8-Molecular v. Empirical formula

This model shows a molecule of ethane. The black circles represent carbon (C) and the white circles are hydrogen (H).

Key Words:

The molecular formula is the actual number of atoms in the molecule.

The <u>empirical formula</u> is the simplest **whole** number ratio formula of a compound.

Extension: What is the molecular formula of the molecule shown above? What is its empirical formula?

8-Finding the empirical formula

<u>Example</u>: What is the empirical formula of H_2O_2 ? <u>Answer</u>: Divide everything by the smallest number in the formula – in this case 2. Dividing through by 2 gives HO. (each element appears once)

<u>TASK</u>: Find the empirical formulas of the following:

- 1. C_6H_6 CH7. $Ca(OH)_2$ CaO_2H_2 2. $C_6H_{12}O_6$ CH2O8. $(NH_4)_2CO_3$ $N_2H_8CO_3$ 3. C_4H_8 CH28. $(NH_4)_2CO_3$ $N_2H_8CO_3$ 4. H_2O H_2O 9. $Mg(NO_3)_2$ MgN_2O_6 5. $H_4C_4O_8$ $H_2C_2O_4$
- 6. P₄O₁₀ P₂O₅

8-Exam Questions

Q1. The formula of a molecule of ethane is C_2H_6 . Give the empirical formula of ethane. (1)

To calculate the empirical formula, divide by the smallest number in the formula (2). This gives CH_3 .

Q2. The formula of ammonium sulfate is $(NH_4)_2SO_4$. What is the empirical formula of ammonium sulfate?

(1)

- 🛛 A NHSO
- \square **B** NH₂SO₂
- \square **C** NH₄SO₄
- $\square D N_2H_8SO_4$

9-Calculating the molecular formula from the empirical formula

Example: The empirical formulae of a compound is CH_2O . The relative formula mass for the molecular formula is 180.0. What is the molecular formula?

Must show working of the following steps:

<u>Step 1</u>: Calculate the relative formula mass for the empirical formula CH_2O :

RFM = 12.0 + (2x1.0) + 16.0 = 30.0

<u>Step 2</u>: Divide the molecular RFM by the empirical RFM 180.0/30.0 = 6

<u>Step 3</u>: Multiply the empirical formula by that number Molecular formula = $6xCH_2O = C_6H_{12}O_6$

9-Calculating the molecular formula from the empirical formula

- The empirical formulae of a compound is AlCl₃. The relative formula mass for the molecular formula is 267.0. What is the molecular formula?Al₂Cl₆
- The empirical formula of a hydrocarbon was CH₂. Find the molecular formula is the relative formula mass is 28.0. (RAM H=1.0, C=12.0) C₂H₄
- The empirical formula of a hydrocarbon was CH.
 Find the molecular formula is the relative formula mass is 78.0. (RAM H=1.0, C=12.0). C₆H₆
- 4. The empirical formula of adipic acid is $C_3H_5O_2$. The RFM is 146 g. Calculate the molecular formula. (RAM H=1.0, C=12.0, O=16.0). $C_6H_{10}O_4$

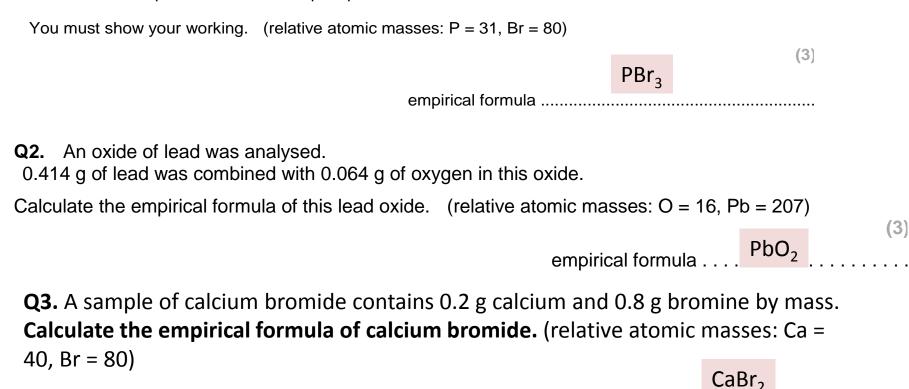
9-Calculating the molecular formula from the empirical formula

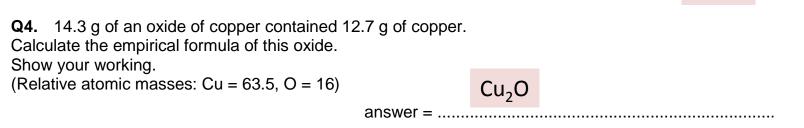
Question: The empirical formulae of a compound is AlCl₃. The relative formula mass for the molecular formula is 267. What is the molecular formula?

<u>Step 1</u>: Calculate the relative formula mass of $AICl_3$: RFM = 27.0 + (3x35.5) = 133.5

<u>Step 2</u>: Divide the molecular RFM by the empirical RFM 267.0/133.5 = 2

<u>Step 3</u>: Multiply the empirical formula by that number Molecular formula = $2xAICI_3 = AI_2CI_6$


10-Calculating the Empirical Formula


<u>Example</u>: A compound of aluminium chloride contained 0.135g of aluminium and 0.533g of chlorine. What is its empirical formula? (relative atomic mass (RAM) of Al=27, Cl=35.5)

Substance	Aluminium Chloride		
1. Elements	AI	CI	
2. $\frac{Mass}{RAM}$	$\frac{0.135g}{27} = 0.005$	$\frac{0.533}{35.5} = 0.015$	
3. Divide by the smaller or smallest number	$\frac{0.005}{0.005} = 1$	$\frac{0.015}{0.005} = 3$	
4. Ratio	1:3		
5. Formula (must give this in the end)	AICI ₃		

10-Exam Questions

Q1. In an experiment, 3.1 g of phosphorus reacted with 24 g of bromine to form phosphorus bromide. Calculate the empirical formula of the phosphorus bromide.

10-Writing a Balanced Equation

Example: 3.18g of copper reacted with 0.800g of oxygen to form a copper oxide. (Atomic Mass Cu=63.5: 0=16.0) Use this information to determine the balanced equation for this reaction.

1. Calculate the empirical formula of the product.

$$Cu = \frac{3.18}{63.5} = 0.0501$$
 $O = \frac{0.800}{16.0} = 0.0500$ Ratio 1:1 CuO

- 2. Write a symbol equation for the reaction:
- $Cu + O_2 \rightarrow CuO$
- 3. Balance!

 $2Cu + O_2 \rightarrow 2CuO$

10-Exam Question – writing an equation

When iron wool is heated in bromine vapour, it reacts to form iron bromide.

In an experiment, 5.60 g of iron reacted exactly with 24.0 g of bromine, Br₂.

[relative atomic masses: Fe = 56.0, Br = 80.0]

Determine, using this information, the balanced equation for the reaction between iron and bromine. You must show your working.

Question number	Answer	Additional guidance	Mark	
	 calculates mol of Fe (1) calculates mol of Br² (1) determines simplest ratio/LHS of equation (1) deduces formula of iron bromide produced/RHS of equation (1) OR divides mass by relative atomic mass (1) simplest ratio (1) empirical formula (1) deduces LHS to obtain balanced equation (1) 	$\frac{\text{Example of calculation}}{\text{mol Fe} = \frac{5.6}{56} = 0.1}$ $\text{mol Br}_2 = \frac{24}{(2 \times 80)} =$ 0.15 $\text{ratio Fe:Br}_2 = 2:3/$ $2\text{Fe} + 3\text{Br}_2$ $2\text{FeBr}_3/\text{Fe}_2\text{Br}_6$ $\frac{5.6}{56} : \frac{24}{80}$ 0.1 : 0.3 1 : 3 FeBr_3 $2\text{Fe} + 3\text{Br}_2 \rightarrow 2\text{FeBr}_3$	you c	s the method an use based e prior slides

(4)

11-Calculating the Empirical Formula

Mg=24)

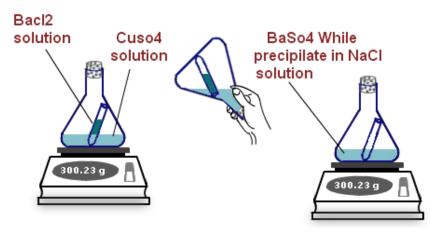
<u>Example</u>: An oxide of magnesium, X, has the following percentage composition by mass: Mg, 60%; O 40%.

Calculate the empirical formula of X (relative atomic mass (RAM) of O=16,

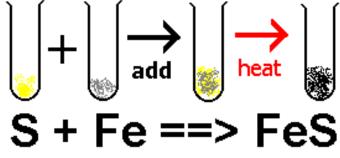
Tip: Treat the % exactly how you treated the masses in calculation 10

Substance	Magnesium Oxide		
1. Elements	Mg	0	
2. Mass	$\frac{60}{24.2} = 2.47$	$\frac{40}{160} = 2.5$	
RAM	$\frac{1}{24.3} = 2.47$	$\frac{16.0}{16.0} = 2.3$	
3. Divide by the smaller number	$\frac{2.47}{2.47} = 1$	$\frac{2.5}{2.47} = 1.01 \approx 1$	
4. Ratio	1:1		
5. Formula	MgO		

11-Calculating the Empirical Formula

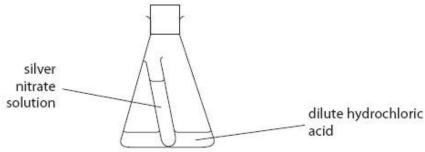

 An hydrocarbon, Z, has the following percentage composition by mass: C, 80%; H 20%. Calculate the empirical formula of X (RAM of H=1.0, C=12.0)

 CH_3


 Silver nitrate has the following percentage composition by mass: Ag, 63.5%; N, 8.2%; O, 28.3%. Calculate the empirical formula. RAM of Ag=107.9, N=14.0, O=16.0)

AgNO₃

12-The Law of Conservation of Mass


The total *mass* of *products* at the end of the reaction is equal to the total mass of the *reactants* at the beginning.

32g + 56g reactants ===> 88g products

12-Exam Questions

Q1. Dilute hydrochloric acid reacts with silver nitrate solution to form silver chloride and nitric acid. This apparatus is used to investigate the mass of the reactants and the mass of products in this reaction.

The total mass of this apparatus was measured.

The flask was shaken to allow the silver nitrate solution and dilute hydrochloric acid to react.

After the reaction the total mass of the apparatus was measured again.

State how the total mass of the apparatus after the reaction will compare with the total mass of the apparatus before the reaction.

The mass will stay the same

(1)

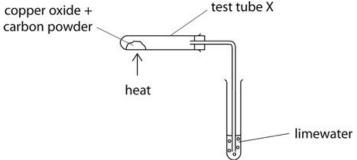
Q2. When calcium carbonate is heated strongly it undergoes thermal decomposition.

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

2.50 g of calcium carbonate was heated strongly.

1.40 g of solid remained after heating.

Calculate the mass of carbon dioxide produced during this reaction.


The mass of the products = mass of the reactants. So $2.50 = 1.40 + \text{mass of CO}_2$ ⁽¹⁾ Mass of CO₂ = 2.50-1.40 = 1.10g

12-Exam Questions

Q3. Propene can be made by cracking fractions obtained from crude oil. This equation shows the cracking of decane to produce propene and butane. $C_{10}H_{22} \rightarrow 2C_3H_6 + C_4H_{10}$ decane propene butane Give the total mass of products formed if 17 g of decane is cracked in this way. The mass products = mass of reactants = 17g

(1)

Q4. A mixture of copper oxide and carbon powder was heated. Carbon dioxide was produced. It was bubbled into limewater.

The word equation for the reaction is

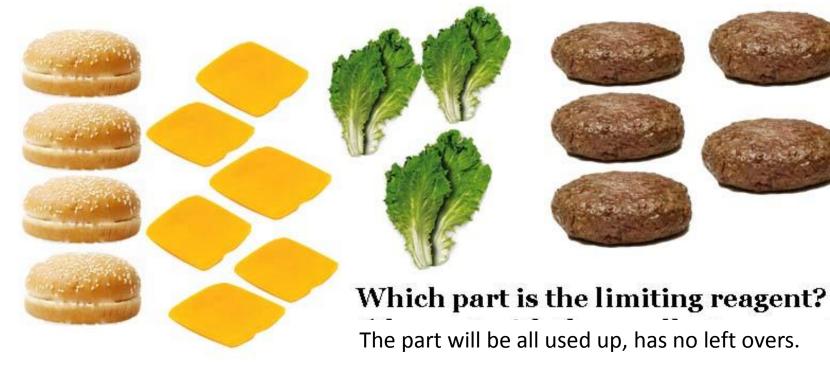
copper oxide + carbon \rightarrow copper + carbon dioxide

The mass of test tube X and its contents was measured before heating and after heating.

There was a change in mass.

Explain why the total mass of the test tube and contents changes during the reaction.

The decreased (got smaller) because the CO₂ escaped from the test tube


.....

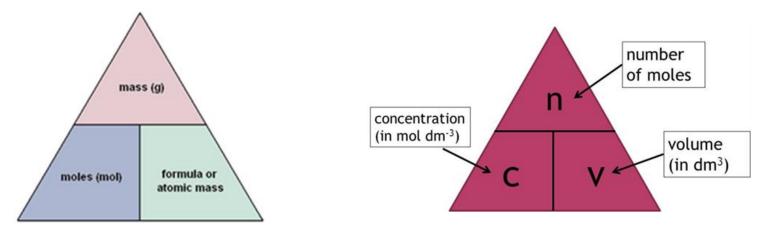
A variety of methods can be used for this. A method will be taught in the first term that develops the understanding needed to tackle the wide variety of A Level calculations

The Parts of a Burger Image: Comparison of the parts of the par

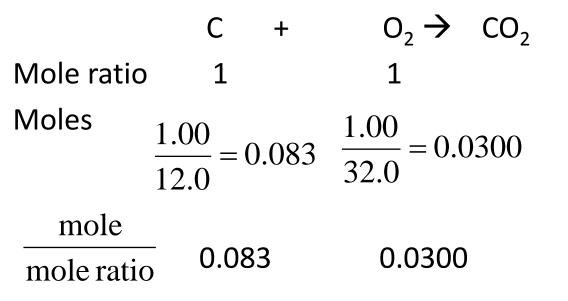
Only 3 burgers can be made.
The limiting reagent is the lettuce leaves.

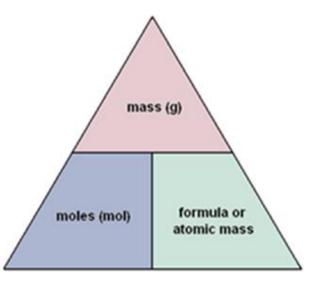
Question 1 How many burgers can be made?

14-What is a limiting reagent?


- The <u>limiting reagent</u> is the reactant will all react. The amount of product you make depends of how much of the limiting reagent you have.
- It is not necessarily the least amount you have, such as the lettuce, there are six pieces but you need two in each burger, despite there are less burgers and buns, the amount of burger made is still limited by the amount of lettuce.

The reactant that has some left after a reaction is said to be <u>in excess</u>.


You could be asked to find the <u>limiting reagent</u> or the <u>reagent in</u> <u>excess</u>.


To find the limiting reagent (or the reagent in excess) compare the moles of both reactants; divide the moles by the mole ration number in the balanced equation and see which is greater.

To find the moles, you will have to use one of the triangles at the beginning of this powerpoint such as:

Example 1: Carbon reacts with oxygen to form carbon dioxide: If 1.00g of carbon reacts with 1.00g of oxygen, which is the limiting reagent? Which is in excess?

Use this triangle to find moles

Answer: Oxygen is the limiting reagent (smaller/smallest mole/mole ratio value) and Carbon is in excess

Example 2: Sulphuric acid and sodium hydroxide neutralise each other.

If 1.0 dm³ of 0.30 mol/dm³ H₂SO₄ reacts with 1.0dm³ of 0.50 mol/dm³ NaOH, which is the limiting reagent? Which is in excess?

 $2NaOH \rightarrow NaCl + H_2O$ H_2SO_4 +Mole ratio 1 2 Mole 1.0x0.50=0.50 $1.0 \times 0.30 = 0.30$ number 0.30/1=0.30 of moles mole 0.50/2=0.25 n concentration (in mol dm⁻³) mole ratio volume (in dm³)

Answer: NaOH is the limiting reagent and HCl is in excess

Use this triangle to find moles

NB: Discard mole/mole ratio value for further calculations, go back to use the moles above it for further calculations! This is crucial!

What is the limiting reagent when 5.09g of Fe reacts with 5.00g of S to form iron sulphide?
 Fe + S → FeS (RAM of Fe=55.8, S=32.1)

Answer: Iron is the limiting reagent and sulfur is in excess

- What is the limiting reagent when 5.0 dm³ of 0.25 mol/dm³ of HCl reacts with 2.0 dm³ of 0.5 mol/dm³ NaOH?
- $HCI + NaOH \rightarrow NaCI + H_2O$

Answer: NaOH is the limiting reagent and HCl is in excess

15-Calculating Percent Yield

percent yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$$

<u>Questions</u>:

1. What is the percentage yield of a reaction where the theoretical yield was 75 kg but the actual yield was 68 kg?

percent yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\% = \frac{68}{75} \times 100 = 91\%$$

2. During a practical a student made 30g of product, but the theoretical yield was 40g. What was the percentage yield?

percent yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\% = \frac{30}{40} \times 100 = 75\%$$

The <u>atom economy</u> of a chemical reaction is a measure of the amount of starting materials that become useful products.

16-How to calculate atom economy

<u>Example</u>: What is the atom economy for making hydrogen by reacting coal with steam? $C(s) + 2H_2O(g) \rightarrow CO_2(g) + 2H_2(g)$

 $44.0 + 2 \times 2.0 = 48.0$

<u>STEP 3</u>: Put values into equation % atom economy = ${}^{4.0}\!/_{48.0} \times 100 = 8.30\%$

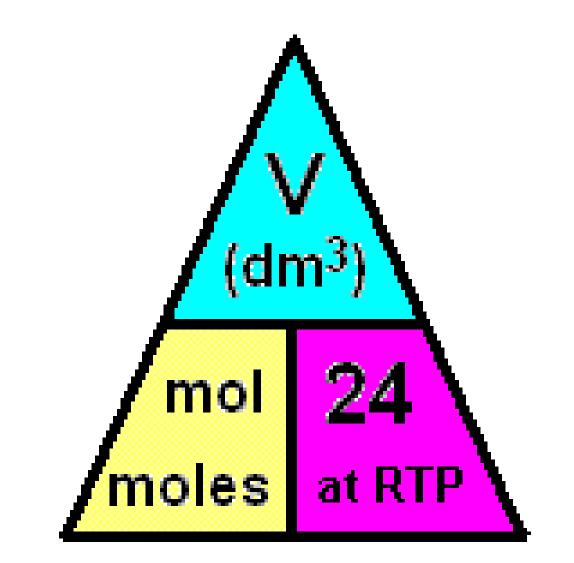
16-Calculating atom economy

<u>Questions</u>:

1. Calculate the atom economy for making hydrogen from methane:

 $CH_4 + H_2O \rightarrow CO + 3H_2$ (RAM H=1.0, C=12.0, O=16.0)

STEP 1: Total RFM of desired product = $3 \times 2.0 = 6.0$ STEP 2: Total RFM of all products = 28.0 + 6.0 = 34.0STEP 3: Atom economy = $6.0/34.0 \times 100 = 17.6 \%$

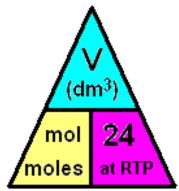

2. What is the atom economy of this process to make ethanol? $C_2H_4 + H_2O \rightarrow C_2H_5OH$ (RAM H=1.0, C=12.0, O=16.0)

Because there is only one product the atom economy will be 100%

3. What is the atom economy of extracting iron from its ore? $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ (RAM Fe=55.8, C=12.0, O=16.0)

STEP 1: Total RFM of desired product = 2 x 56.0 = 111.8
STEP 2: Total RFM of all products = 111.8 + 3x44.0 = 243.8
STEP 3: Atom economy = 111.8/243.8 x 100 = 45.9 %

17-Using the molar volume



17-Calculating volume from moles

(NOT CORRECT SIG FIGS ARE GIVEN IN ANSWERS)

For all questions assumes it is room temperature and pressure (RTP), so the molar volume is 24 dm³.

- What is the volume of 1.5 moles of H₂ gas? volume=moles × 24 = 1.5 x 24 = 36 dm³
- 2. What is the volume of .25 moles of O_2 gas? volume=moles × 24 = 0.25 x 24 = 6 dm³

mass (g)

moles (mol

formula or

atomic mass

3. How many moles of CO_2 are there in 48 dm³ of gas?

 $moles = \frac{volume}{24} = \frac{48}{24} = 2$ moles

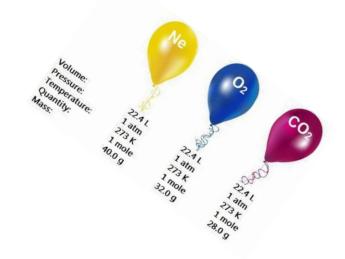
How many moles of Cl₂ are there in 2 dm³ of gas?

$$moles = \frac{volume}{24} = \frac{2}{24} = 0.083$$
 moles

Extension:

4.

- 1. How many grams of nitrogen are there in 10 dm³ of nitrogen (N₂) gas? (RAM N = 14) STEP 1: $moles = \frac{volume}{24} = \frac{10}{24} = 0.417$ moles; STEP 2: mass= moles X RFM =11.7
- 2. What is the volume of 1.2 g of Ne gas? (RAM Ne = 20)


TEP 1: moles
$$=\frac{mass}{RAM} = \frac{1.2}{20} = 0.06$$
 STEP 2: Volume = moles x 24 = 1.44 dm³

17-Gas Volumes and Reacting Masses

Example:

 $Cl_2(g) + H_2(g) \rightarrow 2HCl(g)$

 Because the volume of gases is directly linked to the number of moles (and volume is the same for each gas), volumes can be used instead of moles in reacting mass calculations.

If there is 10.0 dm³ of Cl_2 , then there needs to be 10.0 dm³ of H_2 to react completely with it. There would be 20.0 dm³ of HCl made because the ratio is 2 to 1.

17-Exam Questions

Q1. Sulfur trioxide is produced by reacting sulfur dioxide with oxygen.

$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$

What volume of oxygen, in cm³, would react completely with 500 cm³ sulfur dioxide?

X	Α	500 ÷ 2
X	В	500

- **C** 500 × 2
- D 500 × 32
 - Q2. When nitrogen and hydrogen react to form ammonia, the reaction can reach a dynamic equilibrium.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

Calculate the minimum volume of hydrogen required to completely convert 1000 dm³ of nitrogen into ammonia.

3000

volume of hydrogen = dm³

(1)

(1)

Q3. Hydrogen reacts with oxygen to form water vapour.

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

If 200 cm³ of hydrogen react completely with 100 cm³ of oxygen, what is the maximum volume of water vapour formed, if all volumes are measured at the same temperature and pressure?

A 100 cm³
 B 200 cm³
 C 300 cm³
 D 400 cm³

18-Isotopes & Calculating Relative Atomic Mass

How to Calculate Relative Atomic Mass.

Example. 80% of Boron atoms are the Boron-11 isotope. 20% of Boron atoms are the Boron-10 isotope. What is the <u>relative atomic mass</u> of Boron?

<u>Step 1</u>: $(80 \times 11) + (20 \times 10) = 1080$ <u>Step 2</u>: 1080 ÷ 100 = <u>10.8</u>

18-Isotopes & Calculating Relative Atomic Mass

1. 75% of chlorine atoms are the ³⁵Cl isotope. 25% of chlorine atoms are the ³⁷Cl isotope. What is the relative atomic mass_of chlorine?
 35.5

2. Lithium has an atomic number of 3. A sample of lithium is 7.6%
Lithium-6 and 92.4% Lithium-7. Calculate the relative atomic mass of lithium. 6.9

3. Neon has an atomic number of 10. A sample of neon is 90.5% Neon-20. The rest of the sample is Neon-22. Calculate the relative atomic mass of neon. 20.2

4. A sample of iron contains 6% Iron-54, 92% Iron-56 and 2% Iron-57. What is the relative atomic mass of iron in this sample? 55.9

19-Bond Energy Calculations

Example: Calculate the energy change when water is formed from H_2 and O_2 .

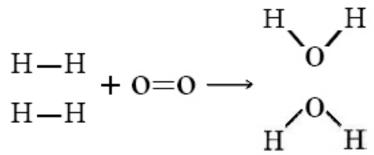
STEP 1 Bonds Broken

2 x (H-H) = 2 x 436 = 872

1 x (O=O) = 498

Total = 872 + 498 = 1370

STEP 2 Bonds formed


4 x (O-H) = 4 x 464 = 1856

STEP 3

Energy change = bonds broken – bonds formed (BB-BF)

= 1370 - 1856 = -486

The negative sign means its exothermic.

Bond	Bond Energy
H-H	436
H-O	464
0=0	498

19-Exam Question

Q5. The energies of some bonds are shown in Figure 13.

bond	energy of bond /kJ mol ⁻¹
H—H	436
CI—CI	243
H—Cl	432

Figure 13

Hydrogen reacts with chlorine to form hydrogen chloride.

 $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$

Calculate the energy change, in kJ mol⁻¹, for the reaction of 1 mol of hydrogen gas, H₂, with 1 mol of chlorine gas, Cl₂, to form 2 mol of hydrogen chloride gas, HCl.

(4)

19-Exam Question -working

STEP 1 Bonds Broken

- $1 \times (H-H) = 436$
- 1 x (CI-CI) = 243
- Total = 436 + 243 = 679

STEP 2 Bonds Made

2 x (H-Cl) = 2 x 432 = 864

STEP 3

Energy change = bonds broken – bonds made

= 679 – 864 = -185 exothermic