Haberdashers' Adams

Y12 INDUCTION

A LEVEL CHEMICAL LANGUAGE (1)

WRITING BALNCED SYMBOL EQUATIONS WITHOUT MISTAKES UNDER TEST CONDITIONS

A: NOTES	Page
HOW TO GET THE MOST OUT OF THIS BOOKLET, and the steps for writing equations	1
Definitions	2,3
GCSE Atomic structure / Periodic table	4
How to work out the type of bonding a substance has	5
How to work out the charges of ions from the Periodic Table	6
Ionic and Covalent bonding	7,8
Naming ions / compounds : LEARN, LEARN and LEARN AGAIN	9
How to Balance equations – and hints how to get faster	10
Three methods for writing ionic formulae	11,12
Remembering the acids reactions and how to work out the names of the salt formed	13
Ions from formulae of acids	14
B: PRACTICE QUESTIONS - (1) Checking you have the individual skills/knowledge need	led
(a) Balancing equations – can you balance quickly?	15,16
(b) Use of terms molecules, compounds and elements and naming	17
(c) Can you work out the charges of ions, do you know the ions in a formula?	18
(d) Do you know the ions and can you write ionic formulae?	19,20
(e) Covalent formulae	21
(g) Do you know the ions and when to use X ₂ when writing symbol equations?	22
(f) Formula test and practicing writing formulae	23
(g) Writing balanced symbol equations (1)	24
(2) Knowing the reactions and acids and writing balanced symbol equations	
(a) Word equations for the reactions of acid and their balanced symbol equations	25-28
(b) More practice writing symbol equations	29-30
C: ANSWER TO PRACTICE QUESTIONS (there may be the odd mistake)	31 - end
Department of Chemistry	

Improving Chemistry GCSE skills for A Level : Repetition followed by Repetition followed by R...

To make a success of A Level all the basic GCSE language skills (types of bonding a substance has, knowing whether a substance is a molecule, element, compound, writing balance symbol, ionic and ion-electron equations) have to be perfect. Some GCSE courses concentrate more of these skills than others so it is important to check for any gaps before you start the A Level. Can you write balance symbol equations quickly without mistake under test conditions?? Only when you can do the Questions on pg 29 without mistake, under test conditions, have you mastered GCSE level, this can take many months – start now to be ready for September

An example : Aluminium(s) + nitric acid(aq) \rightarrow Aluminium nitrate(aq) + hydrogen (g)

The steps involved are

(1) <u>The most important thing to remember is</u> when you are first starting writing equations is that you have to work out the formula of each substance **separately**, ie do not try to work out the formulae of any of the products by looking back at the formulae of the reactants, in the example above you need to work out the four individual formula, and only then link them together by putting balancing numbers in front of the formulae, and ONLY in front - <u>DO NOT CHANGE THE FORMULAE</u>.

(2) Are the substances ionic (or contains ions), covalent or metallic, and when starting out it helps to write I, C or M above the name. a) IF metallic – just write the substance symbol from the Periodic Table <u>DO NOT WRITE A CHARGE, metals elements are neutral</u>

b) If covalent (at GCSE this was if Non-Metal + Non-Metal, can be the same or different Non-Metals eg O₂, NH₃)

- for common covalent substances and acids (if (aq) actually contain ions) you usually just have to remember their formula (see tables on page 9 of notes and also page 2 for knowing which elements go around in pairs)
- others you have to work out form their name (see page 22 in the questions section)

c) If ionic, (at GCSE this was if Metal + Non-Metal eg NaCl, Na₂O)

- if it is a binary ionic compound (ie just containing a two types of 'elements' such as aluminium oxide) then you can work out the charges on the aluminium ion and oxide ion directly from the period table (see page 6 and then write its formula (page 11&12 of notes and pages 18-20 for practice questions)
- if it contains a compound ion eg aluminium nitrate, then you have to remember the compound ion formula (pg 9), including charge, then write its formula (method page 11&12, practice questions pages 18-20) ['hate the –ates', you have to learn them; be 'idle for the -ides' you use the Periodic Table (exception, learn the hydroxide ion: OH'), though once you have learnt the –ates, there is less work to do!!]
- For both i) and ii) in the early stages of getting good at symbol equations, for ionic formulae, write the ions and the number of each needed to ensure the total +ve charge = total -ve charge above the word of the ionic compound, to help you get the correct formula of the compound the first practice page on full equations is set out so that you can do this.

(3) Only balance after 1 and 2 (notes page 10 – make sure you read the hints including the short cuts so you can get faster), just balancing practice questions pages 15 &16) REMEMBER DO NOT CHANGE THE FORMULAE – you can ONLY put big numbers in front

Worked ex	ample			
Step 1	I	(I as aq)	I	C
	Aluminium(s)	+ nitric acid(aq) \rightarrow	Aluminium nitrate(aq) + hydrogen (g)
Step 2 a	Al			
Step 2 b		HNO ₃		H_2 (NOTE, H_2 not H see page2)
Step 2 c			Al^{3+} + 3 NO_{3}^{-}	
	Aluminium(s) +	nitric acid(aq) → Alu	ıminium nitrate(aq) +	hydrogen (g)
Step 2 a/b	Al ·	+ HNO ₃ \rightarrow	AI(NO ₃) ₃	H ₂
			Step 2 c	

Step 3, using handy hints one and three, write 3 in front of HNO_3 as you must have 3 x '(NO_3)' Using handy hint two, leave diatomics to last and use halves if you can, 3H's on left, therefore 1½ H₂

AI + 3 HNO₃ \rightarrow AI(NO₃)₃

You could have also written $2AI + 6 HNO_3 \rightarrow 2AI(NO_3)_3 + 3H_2$ but this involves more work and time. The worked example is much easier than most equations asked in the final exam after two years, but by then you will have had two years doing harder examples than asked at GCSE, the important thing is that you know your GCSE level balanced symbol equations very well before the start of the A Level. The other GCSE equation skills (ionic and ion –electron) are relatively easy<u>once</u> you have mastered balanced symbol equations. The sensible students try to recall the formula that are needed to be learnt for the course most days over the summer, they also do a bit of practice on equations/ equations skills most days.

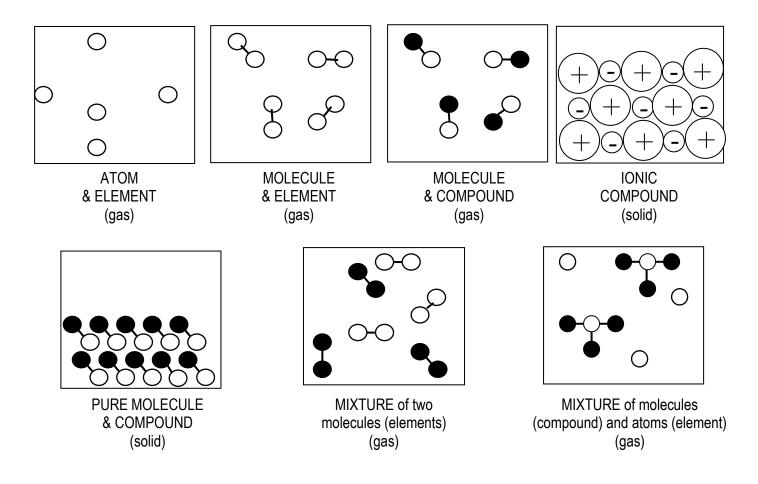
remember DO NOT WRITE THE ANSWERS IN THIS BOOKLET, SO YOU ARE ABLE TO REDO THE QUESTIONS AGAIN, put a * by the ones you get wrong the first time and redo after a week or so.

CHEMICAL LANGUAGE

Substance A general term, could be an atom, element, compound, mixture, etc The term 'species' is also used by chemists

- Atoms The tiny particles that all substances are made from. It is the smallest stable particle of an element that can exist
- Elements Substances that are made up of just one type of atom. eg Ne, Cl₂, Fe. Every atom of the same element has the same number of protons
- **Compounds** two or more <u>different</u> types of atoms <u>chemically</u> bonded together in a fixed ratio. eg NaCl, CO₂, Chemical bond could be ionic or covalent. ionic compounds- made up of metal ions and non metal ions bonded together Covalent bonded compounds made up (usually) of non-metal atoms sharing pairs of electrons

```
        Molecules
        Made up of 2 or more atoms covalently bonded
        eg N<sub>2</sub>, Cl<sub>2</sub>, CO<sub>2</sub>


        Molecules often have no overall charge, though molecular compound ions are common eg SO<sub>4</sub><sup>2-</sup>]
        Most metal containing compounds have ionic bonding and therefore are not molecules
```

Mixtures Two or more **substances that are not chemically bonded together**. Eg Air is a mixture of gases, salt solution is a mixture of salt/water.

lons Atoms (can be compounds) that have a charge as they have gained or lost electrons eg Na⁺, Cl⁻, S²⁻

Compound Compounds that have a charge eg MnO_4^- , can be molecular compound ions eg SO_4^{2-} , **Ions**

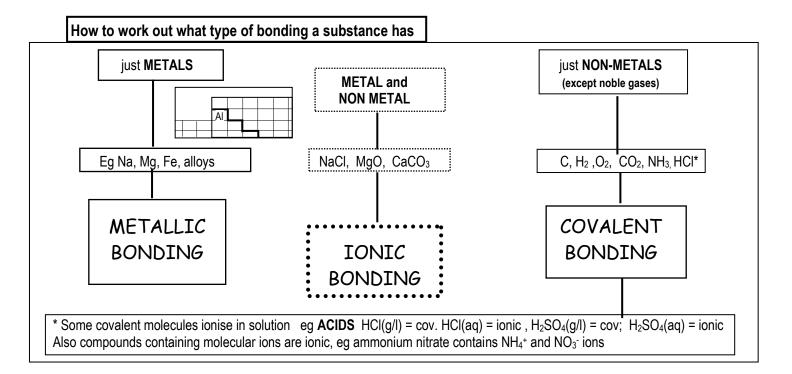
 $\begin{array}{ll} \textbf{HFBrONICIAt} \\ \textbf{REMEMBER} \end{array} is used to remember which elements are diatomic (ie X_2) when present just as the elements by themselves \\ \textbf{HF BrONICIAt does NOT apply to the ions of the element or compounds containing these elements, eg H^+, NO_3^- \end{array}$

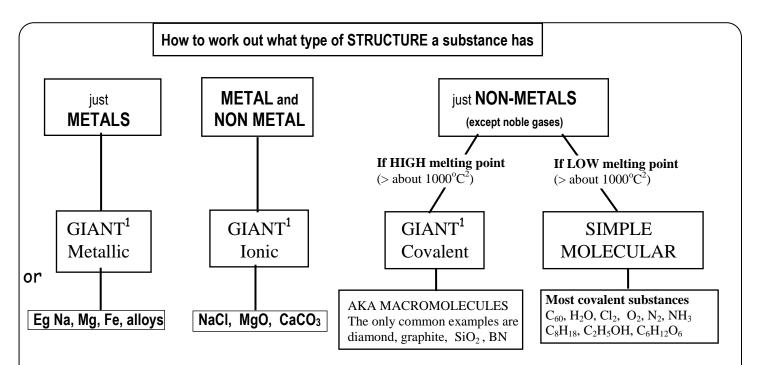
Metalloid Eleme	ent that shows characteristics of metal and non-metals
Non-metals Definition Non-metals react forming	Element that usually react by gaining electron(s) to form negative ions or share electrons lonic compounds or covalent substances (can be elements or compounds)
Metals Definition Metals react to form	Element that usually reacts by losing electron(s) to form positive ions ionic compounds
CHEMICAL PROPERTIES	How a substance reacts with another chemical

PHYSICAL PRO	RTIES Property a substance has that doesnt involve another chemical
Metals	iny (lustrous) Good conductor of heat / electricity, malleable and ductile, sonorous, usually high melting points d high densities and hard (exceptions : alkali metals – soft , needs to be freshly cut to see it shine .
Non-metals	pically Do not conduct electricity / poor conductor of heat (except graphite), brittle, not ductile, Il (exceptions eg graphite, lodine), not sonorous

Exam Technique. only state property that relates to that substance eg Gp1 untypical metals – don't say high melting point. Metalloids can have different chemical / physical properties that are between metal and non-metals eg usually amphoteric oxides

Allotropes	Different structural forms of the same element eg oxygen (O_2) and ozone (O_3) molecules are allotropes of oxygen
lonic compound (Not molecules)	Contains ions [lonic bond is the electrostatic attraction of oppositely charge ions] Formed when elements react by transferring electrons from one atom to another Consist of a metal and a non-metal in a compound eg NaCl
Covalent substance (molecules)	Contain atoms covalently bonded together (covalent bond = shared pair of electrons) Usually formed between two or more non-metals Can be an element (eg H_2) or a compound (CO ₂)

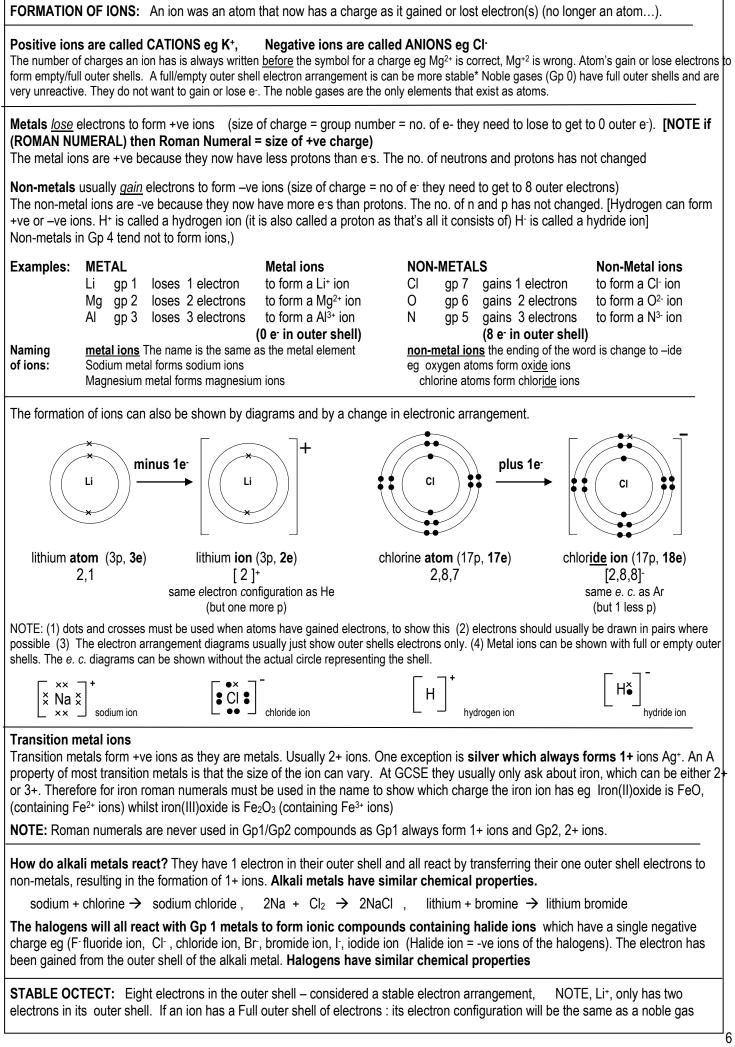

Acid H⁺(aq)	PROTON DONOR [forms H ⁺ ions when dissolved in water, H ⁺ (aq) ions make solutions acidic, pH < 7]. This is actually H₃O⁺ (aq) - the hydronium ion (aka hydroxonium ion)			
Base	PROTON ACCEPTOR [neutralises an acid to form a salt]			
Alkali	Soluble base forms/releases OH- ions when dissolved in water [OH-(aq)ions make solutions alkaline $pH > 7$] (all alkalis are bases, only soluble bases are alkalis)			
Salt	Substance that can be formed when a metal ion or an ammonium ion replaces a hydrogen ion in an acid [a salt can be formed by another method, its a salt as long as it can be formed by replacing a hydrogen ion of an acid]			
Amphoteric	Will react with both an (strong) acid AND with a (strong) alkali			
Solvent	liquid that does the dissolving water, ethanol, tetrachloromethane			


Solvent	liquid that does the dissolving	water, ethanol, tetrachloromethane	
Solute	substance that is dissolved by the solvent	sodium chloride, sugar, gases,	
Solution	mixture of solute dissolved in the solvent	brine	
Solubility	amount that a substance will dissolve		
Precipitate	a solid produced from the reaction of two solutions .		

State symbols (s) = solid; (l) = liquid (g) = gas (aq) = dissolved in water [does not mean soluble or aqueous]

ATOMIC STUCTURE AND THE PERIODIC TABLE	
protons and neutrons in nucleus The nucleus is positively charge electrons in shells* (around nucleus) The electrons are negatively charged	$\bullet \text{ particle} \begin{array}{c} \text{Relative} & \text{Relative} \\ \bullet \text{ proton } (\mathbf{p}) & +1 & 1 \\ \bullet \text{ neutron } (\mathbf{n}) & 0 & 1 \\ \bullet \text{ electron } (\mathbf{e}^{-}) & -1 & 1/2000 \end{array}$
The -ve electrons are held in place by the +ve protons in the nucleus [opposite charges attract] shells have different amounts of energy. Therefore electrons of	atoms are neutral (no electrical charge) because: *The the no. of protons (1+ charge) = no. of electrons (1-) ent an be stated to be in energy levels rather than shells. The
 further away the electron is form the nucleus, the higher its en than inner energy levels. At GCSE either the terms shells or e Symbols for the elements The symbols can be a capital letter or a c represents a new element, CO = 2 elements as 2 capitals. On the IG 	ergy. Therefore outer energy levels are of higher energy nergy levels can be used. apital and a lower case letter Eg K, Na. Every new capital letter
numbers (bottom left) and with relative atomic mass numbers <u>above</u> t 35.5 35.5 is the relative atomic mass (see las	he symbol t topic in Chemistry Unit 2) ith an atomic number of 17 is a chlorine atom.
Arrangement of electrons – SHELLS (or energy levels) : ONLY N The electrons in an atom occupy the lowest available energy level. The electrons) is fully filled before an electron will occupy the second she determines an element's position in the periodic table and how the electron	erefore the innermost shell (the 1 st shell - maximum of two I (maximum of 8 electrons). The arrangement of electrons
1^{st} shell=up to 2 electronsAs Li has 3 electrons, its electrons 2^{nd} shell=up to 8 electronsAs Na has 11 electrons, its electrons, its electrons 3^{rd} shell (treat as only 8 up to Ca)As K has 19 electrons, its electrons	ectron arrangement is 2,8,1 group 1 as they all have 1 electron arrangement is 2,8,8,1 electron in their outer shell
Elements in the same group in the periodic table have the hence The group number of an element = the number of elect	
elements in the same group have similar chemical reactivity , as	electrons are transferred/shared in chemical reactions
PERIODIC TABLE: arranged in order of increasing atomic n	umber shows known elements
Periods	hysical and chemical properties (periodicity) Hydrogen is a non metal It's unusual as it can lose, gain or share electrons! Often it's not placed in a group
1 H 2 3 A m AI L e AI K t TRANSITION METAL BLOCK L I usually form 2+ ions (except silver, 1+) I The Periodic Table is also divided into metals and non metals (step or	H L (40) and K(39) it shows H L that the periodic table is A E in order of increasing proton N E Ar comes before K, though N E S S S S

4


<u>1 Giant structures</u> can therefore have metallic, ionic or covalent bonding. The type of bonding the giant structure has can be worked out by its electrical conduction properties.

Metallic: conducts when liquid & solid (without decomposition) due to delocalised outer shell electrons that can move through the structure. lonic: do not conduct when solid but conducts with decomposition when liquid (molten) or in solution due to mobile ions that are attracted to the electrodes

Covalent: (giant and simple molecular) do not conduct electricity (except graphite) as outer electrons involved in bonding and are not free to move through the structure and simple molecules have no overall electric charge.

The giant structures only apply when the substances are liquids or solids (not when gaseous). A Giant *covalent* structure is destroyed when it boils eg diamonds just become C atoms when it boils. If the gas formed was condensed, you would just get soot. A Simple molecular structure - remain as molecules (just separated) when it boils. When condensed the same simple molecular structure would reform (eg $H_2O(I) = H_2O(g)$)

² the mpt used to distinguish between simple molecular and giant covalent is approximate and only applies to substances with covalent bonding. Giant metallic substances can have quite low mpt eg sodium, 98°C) lonic compounds vary but normally above 500°C. ALL Giant covalent structures are insoluble

CHEMICAL

BONDING

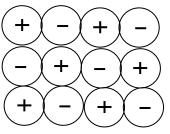
Chemical bonds form when atoms react by TRANFERRING or SHARING (Valence) outer shell electrons (ie highest occupied energy levels of atoms)

all chemical bonds involve the electrostatic attraction of opposite charges Types of bonds: ionic, covalent, metallic

Atoms, Electron configuration & Bonding Only atoms of Group O are stable substances by themselves. A full outer shell of electrons is therefore said to be a stable electron configuration. All other atoms in the periodic table transfer/gain/share electrons resulting in the formation of bonds to become more stable. In the process of forming bonds most atoms achieve a full outer shell electron configuration. It is not necessarily the full outer shell configuration that leads to stability, rather it is the formation of bonds. For most atoms, a full outer shell is eight electrons, For H and He, (period 1) a full outer shell = 2 electrons.

 METALS lose
 electrons [to form positive ions (size of charge = group number)] to a non metal to form ions which bond together

 NON-METALS
 EITHER OR
 gain
 electrons [to form -ve ions (size of charge = gp. no. - 8)] from form ions which bond together


 Solution
 share
 electrons with other non metals to form covalent substances.

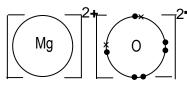
 OR
 share
 electrons with other non metals to form covalent substances.

 IONIC BONDING – Defn:
 electrostatic attraction between oppositely charged ions

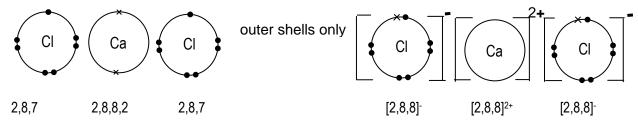
 [STRONG]
 The ionic bond extends in all directions throughout an ionic lattice (see structure topic)

- Ionic bonding occurs AFTER ions have been formed
- extends throughout the structure, it is not just 2 ions bonded together
- eg between metal and nonmetal ions eg NaCl, MgO, K_2S
- eg between ions/ compound ions eg CaCO₃, MgSO₄, NH₄NO₃
- lons are formed when (usually) metal atoms <u>transfer</u> outer shell electron(s) to a non-metal so that a negative and positive ions have formed.

Formation of ions lonic bonding occurs **AFTER** a metal atom has **transferred** its OUTER SHELL electron(s) to a non-metals OUTER SHELL so that ions are formed which attract each other and therefore form the ionic bond.

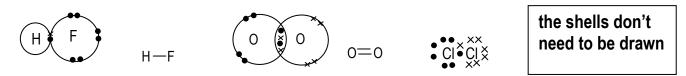

Eg (1) Formation of ions in magnesium oxide Magnesium reacts with oxygen by transferring its 2 <u>outer</u> shell electrons to oxygen's outer shell. Mg atoms become Mg^{2+} ions (empty outer shell), O atoms become oxide, O^{2-} , ions with eight outer electrons (a full outer shell). Both Mg^{2+} and O^{2-} ions formed have the same electronic configuration as Neon (2,8). They are not the same as Ne because they still have their original number of protons. Usually only show the valence electrons, as the inner electrons are not involved in bonding

or


Mg: [2,8,2] O: [2,6] magnesium atom oxygen atom outer main shells only must use dots and crosses to show where the electrons come from

Mg²⁺ [2,8,]²⁺ O²⁻ [2,8,]²⁻ magnesium oxide (ionic compound)

note: Mg forms a 2^+ ions, because it loses 2 electrons, oxygen atoms forms a 2- oxide ion as it gains 2 electrons. Electrons are negative. The charges on the ions (Mg²⁺ and O²⁻) are not written in the formula of Magnesium oxide, MgO. It is assumed that a chemist would know that it is likely to be an ionic compound (as it contains a metal and a non metal). It is also assumed that a chemist could work out the size of the charges on the ions either by the diagram above, or from their knowledge that group 2 elements from 2+ ions, and group 6 elements form 2⁻ ions.


Eg (2) Calcium Chloride Calcium is in group 2, therefore will lose its 2 outer electrons. Chlorine is in group 7 and will gain 1 electron. In order for both atoms to achieve a full/empty outer shell calcium transfers one outer electron to one chlorine and its other outer electron to a another chlorine atom so two chloride ions (Cl-)are formed. CaCl₂

COVALENT BONDING: DEFN: A shared pair of electrons between atoms [STRONG] the electrostatic attraction is between the shared negative electrons and both positive nuclei NOTE: Covalent bonding: Usually occurs between non-metals Single covalent bond: One shared pair of e (2e overall) with one e coming from each atom, represented by a line like this H-F Both electrons in a shared electron pair can originate from one of the atom (dative covalent) **Double covalent bond**: Two shared pairs (4e shared overall), represented by 2 lines eq O=O The two bonds are not identical Triple covalent bond: Three shared pairs (6e shared overall), represented by 3 lines eg N=N LONE PAIRS Non-bonding outer shell electrons -should usually be shown in pairs in the 'after' bonding diagram This is the representation of the molecule by showing the covalent bonds as lines Displayed formula :

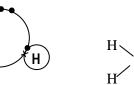
Examples Eg HF, a Hydrogen atom has 1 (outer) electron, and fluorine has 7 outer electrons, the atoms share one each. The hydrogen now has a share in 2 electrons, and fluorine has a share in eight electrons and a covalent bond has been formed.

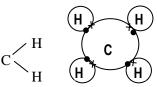
only outer shells shown \bullet and \times must be used to show where the electrons have come from

Electron pairs in the outer shell that are not used in the bonding are called lone pairs of electrons. each O atom in O_2 has 2 lone pairs. Each Cl atom in Cl_2 has three lone pairs of electrons.

H₂O, water

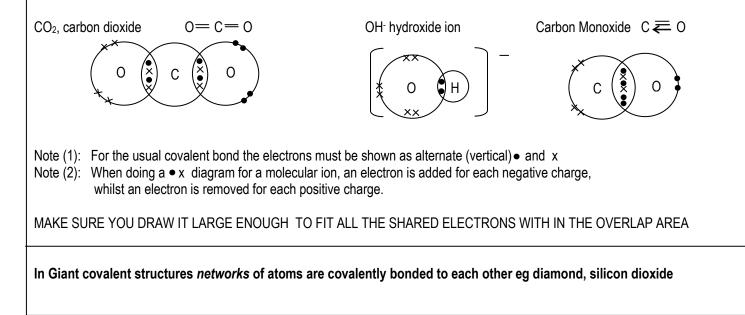

Ή


NH₃, ammonia


O + H, O group 6, needs 2 electrons, Therefore bonds with two hydrogens N + H, N group 5, needs 3 electrons, Therefore bonds with three hydrogens

 CH_4 , methane C + H C group 4, needs 4e,

0



Therefore bonds with four hydrogens

Displayed formula : this is the representation of the molecule by showing the covalent bonds as lines

Naming Substances (1) USING JUST THE PERIODIC TABLE	
Name of FORMULA WITH JUST ONE TYPE OF ATOM (AND NO CHARGE) eg K	
• As stated on the periodic table (PT) K = potassium, Cl ₂ = chlorine P ₄ = phosphorus	
Name of FORMULA of an ION eg K+ and Cl-	
 If it is a metal ion name is as stated on the PT with the word ion on the end eg Na⁺ = sodium i If it is a non metal ion CHANGE THE ENDING TO –IDE and add the word ion eg CI⁻ = chloride 	
Name of a compound with ONE type of METAL AND ONE type of NON METAL (and no over	all charge) eg LiCl
Give the name of the metal first as printed on the periodic table eg	LiCl = lithium chlor <u>ide</u>
Give the name of the non metal second BUT CHANGE ITS ENDING to –IDE	MgF ₂ = magnesium fluor <u>ide</u>
Name of a compound with two types of NON METALS (and no overall charge) eg CO	
 Give the name of the first non metal as given on the periodic table Give the name of the non metal second BUT CHANGE ITS ENDING to –IDE If there is more than one of the second type, use mono for 1, di for 2, tri for 3 and tetra for 4 	eg CO = carbon monoxide NO ₂ = nitrogen dioxide

It there is more than one of the second type, use mono for 1, di for 2, tri for 3 and tetra for 4 Some Exceptions - common molecules such as H₂O (water), NH₃ (ammonia) , acids

FORMULAE THAT NEED TO BE REMEMBERED Naming substances (2)

COMMON MOLECULES						
H ₂ O	water	CH ₄	Methane	H ₂ O ₂	hydrogen peroxide	
CO ₂	carbon dioxide	CO	carbon monoxide	C₂H₅OH	ethanol	
SO ₂	sulphur dioxide	NO	nitrogen monoxide	C ₆ H ₁₂ O ₆	Glucose	
SO ₃	SO ₃ Sulphur trioxide NO ₂ Nitrogen dioxide HCOOH Methanoic acid					
NH ₃	NH ₃ ammonia C ₂ H ₄ Ethene CH ₃ COOH Ethanoic acid					
(sometimes the number of the second atom is given from mono =1, $di = 2$, tri = 3).						

IN BOLD - THE FORMULAE/NAME YOU MUST WRITE OUT EVERY DAY OVER THE SUMMER UNTIL YOU CAN REMEMBER THEM ALL < THEN >

GRADUALLY INCREASE THE LENGTH OF TIME BETWEEN WRITING THEM OUT SO YOU NEVER FORGET THEM

	ACIDS	COMPOUND IONS			
H ⁺ ion Hydrogen ion or Proton			hydroxide ion	NH4 ⁺	ammonium ion
H ₂ CO ₃	carbonic acid*	HCO ₃	hydrogencarbonate ion		
СН₃СООН	ethanoic acid	CH₃COO	COO Ethanoate ion		
HNO ₃	nitric acid [nitric(V) acid]	NO ₃	Nitrate ion [Nitrate(V) ion]		
HNO ₂	nitric(III) acid (Nitrous acid)	NO ₂	Nitrate(III) ion (nitrite ion)	MnO ₄	Manganate(VII)ion
H ₂ SO ₄	sulphuric acid [sulphuric(VI) acid]	SO ₄ ²⁻	Sulphate ion [sulphate(VI) ion]		
H_2SO_3	sulphuric(IV) acid (Sulphurous acid)	SO3 ²⁻	sulphate(IV) ion (sulphite ion)		
HCI	hydrochloric acid	CO ₃ ²⁻	Carbonate ion		
HCIO ₃	Chloric acid [chloric(V) acid]	CIO ₃	Chlorate(V) ion		
HCIO	Chloric(I) acid	CIO-	Chlorate(I) ion		
H ₃ PO ₄	phosphoric acid (phosphoric(V) acid	PO4 3-	Phosphate ion (Phospha	ate(V) ion]	
H₃PO₃	phosphoric(III) acid (phosphorous acid)	PO3 ³⁻	phosphate(III) ion phosphite ion		

** $H_2SO_3(aq)$ may not exist, in solution the following occurs $SO_2 + H_2O = H^* + HSO_3$ forming the hydrogensulphate(IV) ion [equilibrium lies to the left]

note compound ions with oxygen end with -ate ion OR -ate(oxidation number) ion

BALANCING EQUA	TIONS					
Chemists often write chemical equations using symbols instead of wo magnesium oxide can be written as: Magnesium + oxygen \rightarrow m	· · ·	eaction of magnesium with oxygen to form Mg + O ₂ \rightarrow MgO				
howeverthis symbol equation is not complete. The equation need	0					
Mg + $O_2 \rightarrow MgO$	2Mg + O ₂	\rightarrow 2MgO				
Left hand side Right hand side	Left hand side	Right hand side				
1 Mg 1 Mg 2 O 1 O	2 Mg 2 O	2 Mg 2 O				
not balanced	balar					
 In a balanced equation there has to be the same number of To balance an equation, numbers CAN ONLY be put in front 		on both sides of the arrow.				
Remember						
 A chemical formula represents two or more elements chemical Symbols for elements are either a single capital letter (eg O), or capital letters, must represent the elements N and O, not a my 	or a capital letter and a sr	mall case letter (Na). So NO, as it is two				
NOTE: Subscript numbers cannot be changed . eg O ₂ cannot be change	d into O₃					
$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Putting the balancing number in front of a formula, multiplies all eg 2 CuO means there are 2 Cu and 2 O , 3 Mg(NO ₃) ₂						
Handy Hints to speed	up your balancing					
1) Look at the equation and first put in the minimum numbers red	uired by the formulae					
eg Zn + HCl \rightarrow ZnCl ₂ + H ₂ : The left hand s required by the formula ZnCl ₂ . In this example, this has led straight av		ires at least 2 HCI to provide the two CI on.				
2) If the equation contains a diatomic element <u>by itself</u> eg O_2 Br ₂ $\frac{1}{2}$'s if needed. $\frac{1}{2}$ O_2 (ie 1 O) or a multiple of a $\frac{1}{2}$ O_2 eg 3.5 O_2 (= 7	leave the balancing of O) are usually allowed	f the O_2 / Br_2 to the end and then use				
NOTE: This can usually only be done for Diatomic elements , as yo as you cannot have $\frac{1}{2}$ an O atom, $\frac{1}{2}$ O ₂ is accepted as it give 1 whole		on with $\frac{1}{2}$ an atom eg $\frac{1}{2}$ H ₂ O is wrong,				
eg NO + $O_2 \rightarrow NO_2$ The equation would balance in	you used $\frac{1}{2} O_2$. =>	$NO + \frac{1}{2}O_2 \rightarrow NO_2$				
The equation NO + $\frac{1}{2}O_2 \rightarrow NO_2$ can be multiplied by 2 to give whole numbers => 2NO + $O_2 \rightarrow 2NO_2$						
3) Count the Compound ions, rather than the atoms that make up the compound ions, if the compound ion stays together						
eg $Mg(OH)_2$ + $HNO_3 \rightarrow Mg(NO_3)_2$ + H_2O ;						
Rather than trying to count all the oxygens, note that on the left hand ion on the right (in HNO ₃) therefore put a 2 in front of nitric acid (HNO H ₂ O. ie get to Mg(OH) ₂ + 2 HNO ₃ \rightarrow Mg(NO ₃) ₂ + H ₂ O the will lead to a balanced equation. Mg(OH) ₂ + 2 HNO ₃ \rightarrow Mg(NO compound ions are! (see page 4).	3), and then you only have n count the remaining O	ve to count the oxygen in Mg(OH) ₂ and => 20 and 4H's on the left so $2 H_2O$				
4) When a carbonate/hydrogencarbonate compound reacts to for needed in the balancing eg Mg(HCO ₃) ₂ + HCl \rightarrow MgCl ₂ + CC		y the same number of CO₂ and H₂O are				

- Using hint 1 => Mg(HCO_3)_2 + 2HCI \rightarrow MgCl₂ + CO₂ + H₂O
- There are 2 C in Mg(HCO₃)₂ therefore 2 CO₂
- Using hint 4 try 2 H₂O => Mg(HCO₃)₂ + 2HCI \rightarrow MgCl₂ + 2CO₂ + 2H₂O equation is balanced

5) Balancing redox equations using oxidation numbers: see page 22

WRITING SYMBOL EQUATIONS from word equations Symbol for Metal Elements If the word equation contains a metal element (ie a metal by itself) just write the symbol of the metal from the periodic table. Do not change the symbol AT ALL. Eg magnesium Mg not Mg₂ or Mg²⁺ Symbol/formulae for Non - Metal Elements If the word equation contains a non-metal element (ie a non-metal by itself) just write the symbol of the non-metal from the periodic table UNLESS the element is H,F,Br,O,N,I,Cl, At in which case write it as a diatomic molecule ie H₂, F₂ Br₂ O₂ N₂ I₂ At₂ Cl₂ l₂. These can be remembered by (Mr) HF. BrONICIAt has a twin brother. Formulae of Non- Metal Compounds A. Some formulae you can work out from the name, if you remember that mono = 1, di = 2, tri = 3, tetra = 4 B. Some formulae need to be remembered - see table on previous page WRITING Formulae of **IONIC** compounds (Metal + Non metal) To work out the formula you first NEED TO KNOW THE CHARGE ON THE ION. First Always check whether it is an ion that needs to be remembered or whether it is an ion whose charge can be worked out from the periodic table CHARGES OF METAL IONS (+ve) For GROUPS Charge = Group no. eg all Gp 2 have 2+ charge This is equal to the no of e- that have to be lost for a full outer shell For TRANSITION Charge usually = 2+ (Except for Aq⁺ and for some. Roman numerals show the size of the METALS eg Iron(III)chloride contains Fe³⁺ ions, Iron(II)chloride, Fe²⁺ ions CHARGES OF NON-METAL IONS (-ve) Charge = Group number minus 8. eq oxide = 0. Gp 6 charge = 6 - 8 = -2) This is equal to the no of e- that have to be GAINED for a full shell

Once the charge is known, the formula can be worked by either of the following methods

Method (1) [this avoids writing Pb₂O₄ formula (incorrect) instead of correct PbO₂ for lead(IV)oxide]

• Ionic compounds have no overall charge as the +ve charges are cancelled out by an equal number of -ve charges

• The subscript numbers in the formula are the number needed of each ion to get the +ve/-ve charges to balance.

(1) Use the periodic table to work out the charges on the ions (or if a –ate or –ite compound ion, you have to remember the ion) Eg Magnesium Chloride , contains Mg^{2+} and Cl^{-} ions ; Magnesium nitrate, Mg^{2+} and nitrate ions, $NO_{3^{-}}$

(2) Work out the number of each ion so that the total charge of the compound is zero. Here **TWO** Cl⁻ ions are needed to make the make 2 – ve charges (Cl⁻ has 1 –ve charge) to balance out the 2+ charge of the Mg²⁺ ion- => ANSWER = MgCl₂ NOTE: Brackets are used if more than one compound ion is needed eg Magnesium nitrate, made up of magnesium ions Mg²⁺ and nitrate ions, NO₃⁻ => Answer = Mg(NO₃)₂

Method (2) Quick method, but need to cancel down crossing over size of Step 1: write out ions AI^{3+} SO ₄ ²⁻ NOTE: if ions are of the same size then								
	3	2						
Step 2: write out with size of ion above symbol(s), in a different colour.	AI	SO ₄						
Step 3: cross over diagonally	AI 2	SO _{4 3}						
step 4: if needed cancel down to smallest whole number (eg Pb ⁴⁺ + $O^{2-} \rightarrow Pb_2O_4 \rightarrow PbO_2$) step 5: if needed cross out any 1's step 6: put brackets around compound ions if there is more than one Al ₂ (SO ₄) ₃								

Method 3 – using Valency

Valence electrons – the electrons in the outer shell of an atom VALENCY : the combining power of an atom

Group	Ι	II	III	IV	V	VI	VII	0
Typical valency (non-metals)	-	-	3	4	3	2	1	0
maximum (non-metals)			(5)	4	5	6	7	8!
Typical Valency (metals)	1	2	3	2&4	3&5	4&6	-	-
Transition metals	Valency can vary eg Fe 2 & 3 ; Mn 2 to 7 ; Ag 1 only							

Typical valencys when metals react to forming IONIC compounds

- Gp II elements have a valency of 2 as they lose the two outer shell electrons when combining with another atom to form an empty outer energy level [noble gas electronic structure]
- Gp IV metals can have a valency of 2 or 4 as they can lose two or four electrons when combining
- Transition metals varies

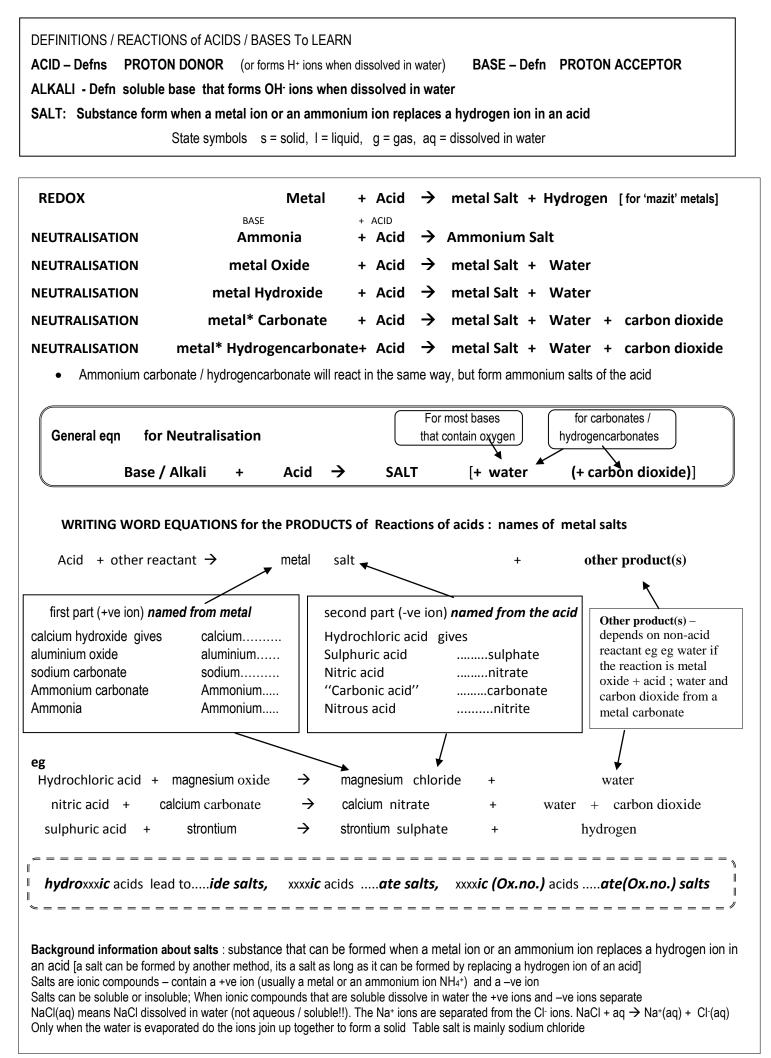
Typical valencys when Non- metals form IONIC or COVALENT compounds

- Gp VI elements has a valency of 2 as they need two electrons to complete its highest energy level / outer shell (eithe by gaining two outer shell electrons from other atom(s) when combining / or sharing two electrons from other atom(s)
- Boron valency usually 3!!
- Can range widely

Writing formula using valency - use cross over method	Example for Lead(IV)sulphate				
Step1: write out with valency above symbol(s), in a different colour.	4 2 Pb SO4				
Step 2: cross over diagonally	Pb 2 SO4 4				
step 3: put brackets around compound ions if there is more than one	Pb ₂ (SO ₄) ₄				
step 4: if needed cancel down to smallest whole number	Pb(SO ₄) ₂				
step 5: if needed cross out any 1's	Pb(SO ₄) ₂ Lead(IV)sulphate				

Examples of wide ranging valencys of elements

(1) Nitrogen can be 1 to 5 (N_2O , NO, N_2O_3 , NO₂, N_2O_5)


(2) Some Transition metals can vary widely and also can form covalent compounds, usually if they contain a high proportion of oxygen eg Chromium trioxide

	Ionic or Covalent	Valency	Name	Basic, amphoteric or acidic oxide?
CrO	Ionic	1	Chromium(II)oxide	Basic
Cr_2O_3	Ionic	3	Chromium(III)oxide	Amphoteric
CrO ₂		4	Chromium(IV)oxide	Amphoteric
CrO ₃	Covalent	6	Chromium(VI)oxide	Acidic

Chromium(VI)oxide may react with water in the same way as the covalent sulphur trioxide, forming chromic acid

SO_3	+	$H_2O \rightarrow$	H_2SO_4	;	SO_3	+	H_2SO_4	\rightarrow	$H_2S_2O_7$
CrO ₃	+	$H_2O \rightarrow$	H_2CrO_4	;	CrO_3	+	H_2CrO_4	\rightarrow	$H_2Cr_2O_7$

Sulphuric acid reacts with sulphur trioxide forming 'oleum' aka disulphuric acid; Chromic acid would react with chromium(VI)oxide to form dichromic acid. The $Cr_2O_7^{2-}$ ion, 'dichromate(IV)ion is a common chemical in A Level chemistry.

EXAMPLES of acids / ions from acids TO LEARN : NOTE Chemists usually write $H^+(aq)$ instead of H_3O^+ (aq), and therefore it is acceptable to do this, unless you are asked to show how the acid is reacting with water.

Name	Formula	lons produced in water for one acid molecule		Name of negative ion					
Strong	acids	[H+(aq) =F		H* ions are also known as protons					
Hydrochloric acid	HCI	H⁺	Cl-	Chloride ion					
Chloric(V) acid	HCIO ₃	H⁺	CIO ₃	Chlorate(V) ion					
nitric acid	HNO ₃	H⁺	NO ₃	Nitrate ion					
sulphuric acid	H_2SO_4	2 H ⁺ SO ₄ ²⁻		Sulfate ion					
Note: the size o	Note: the size of charge on the negative ion = number of H⁺ ions formed when the molecule ionises in water								
		Di- and triprotic a	cids can react by	losing only some of their protons					
sulphuric acid	H ₂ SO ₄	H⁺	HSO4	Hydrogensulfate ion					
phosphoric acid	H ₃ PO ₄	H⁺	2 - H ₂ PO ₄	dihydrogenphosphate ion					
eć	g KOH + H2SO4 - 2	KHSO₄ + H₂O	; KHSO4 is cal	led potassium hydrogensulphate					
Acid salts	potassium hydrog	gensulphate is an e	example of an 'ac	id salt' as it can still donate a proton, and its a salt.					
·	The HSO4 ⁻ ion is a	n 'acid ion', not an	acid salt (need +	ve & -ve ion to be a salt],					

Weak	acids	only about 1 to10 of 1000 molecules split up to form ions, for carbonic acid even fewer							
phosphoric acid	H ₃ PO ₄	3 H ^{+ *}	Phosphate ion						
Nitric(III) acid	HNO ₂	H^{\star}	NO ₂	Nitrate(III) ion					
carbonic acid	H ₂ CO ₃	H+	HCO ₃ ⁻	Hydrogencarbonate ion					
ethanoic acid	CH ₃ CO ₂ H	H⁺	CH ₃ CO ₂	Ethanoate ion					
Citric acid	Not on syllabus HOOCC(CH ₂ CO ₂ H) ₂ OH	3H+	Not on syllabus C ₆ H ₅ O7 ³⁻	Citrate ion					
Ammonium ion	NH4 ⁺	Can act as a	n acid as it can do	nate a proton $NH_{4^+} + OH^- \rightarrow NH_3 + H_2O$					
Strong acid	Complete	e ionisation in wa	ater (every molecule	reacts to form H(aq) ions and a –ve ion)					
*weak acid	Partial io	nisation in water	r (only a few molecu	le react to form H⁺ (aq) ions and a –ve ion)					
*	when an acid can read	when an acid can react to release more than 1H+ ion, the other ions usually only partially ionise, like a weak acid							

NOTE (1) The terms 'Strong' and 'weak' CANNOT be used to imply the overall amount of a substance dissolved in water. **Strong and weak only refer to the amount of ionisation**.

NOTE (2)The terms concentrated and dilute are used to imply the amount of substance dissolved in a given volume .Dilute solution of a strong acid:a relatively small amount of HCl dissolved in waterDilute solution of a weak acid:a relatively small amount of ethanoic acid dissolved in waterConcentrated solution of a strong acid:a relatively large amount of HCl dissolved in water)Concentrated solution of a weak acid:a relatively large amount of ethanoic acid dissolved in water)

NOTE (3) : To compare the pH of a strong acid and a weak acid in a fair way the weak acid and strong acid must be of the same concentration (and both be monoprotic or diprotic acids). If this is the case then the pH of the stronger acid will always be lower

BALANCING EQUATIONS 1

1 State the number of each type of atom in the following. Where the formula has a balancing number, take the balancing number into account when working out the number of each type of atom.

а	PbO ₂	no. of Pb =	no. of O =			(1)
b	Al(NO ₃) ₃	no. of AI =	no. of O =	no. of N :	=	(1)
С	Bi ₂ (SeO ₃) ₅	no. of Bi =	no. of O =	no. of Se	=	(1)
d	2 Li ₂ S	no. of Li =	no of S =			(1)
е	$3H_2SO_4$	no. of H =	no. of O =	no. of S =	=	(1)
f	2(NH ₄) ₃ AsO ₄	no. of H =	no. of O =	no. of As =	No of H =	(1)

2. Balance the following equations.

А	H ₂	+	CI_2	\rightarrow	HCI				
В	Ва	+	O ₂	\rightarrow		BaO			
С	HCI	+	Mg	\rightarrow	MgCl ₂	+	H_2		
D	К	+	H ₂ O	\rightarrow	KOH	+	H ₂		
E	Mg(OH) ₂	+	HNO ₃	\rightarrow	Mg(NO ₃) ₂	+	H_2O		
F	H_2SO_4	+	Na	\rightarrow	Na ₂ SO ₄	+	H_2		
G	In	+	O ₂	\rightarrow	In_2O_3				
Н	PbCO ₃	+	HCI	\rightarrow	PbCl ₂	+	CO ₂	+	H_2O
I	Ca(OH)₂	+	H_2SeO_4	\rightarrow	CaSeO ₄	+	H ₂ O		
J	Na	+	HCI	\rightarrow	NaCl	+	H_2		
К	LiOH	+	H_2SO_4	\rightarrow	Li ₂ SO ₄	+	H ₂ O		
L	CaCO₃	+	HNO ₃	\rightarrow	Ca(NO ₃) ₂	+	CO ₂	+	H_2O
М	NH ₄ OH	+	H_2SeO_4	\rightarrow	(NH ₄) ₂ SeO ₄	+	H_2O		
Ν	Ba(HCO ₃) ₂	+	HNO ₃	\rightarrow	Ba(NO ₃) ₂	+	CO ₂	+	H_2O
0	Al	+	HNO ₃	\rightarrow	AI(NO ₃) ₃	+	H_2		
Р	C_2H_6	+	O ₂	\rightarrow	CO	+	H_2O		
Q	In ₂ (CO ₃) ₃	+	HCI	\rightarrow	InCl ₃	+	H ₂ O	+	CO_2
R	Ru_2O_3	+	CO	\rightarrow	Ru	+	CO ₂		
S	Ga_2S_3	+	HNO ₃	\rightarrow	Ga(NO ₃) ₃	+	H_2S		
Т	H_3PO_4	+	Cu(HCO ₃) ₂	\rightarrow	Cu ₃ (PO ₄) ₂	+	CO ₂	+	H_2O
U	C_4H_{10}	+	O ₂	\rightarrow	CO ₂	+	H ₂ O		
V	RbOH	+	$H_2 TeO_4$	\rightarrow	Rb ₂ TeO ₄	+	H_2O		
W	CH₃OH	+	O ₂	\rightarrow	CO_2	+	H_2O		
Х	NH_3	+	H_3PO_4	\rightarrow	(Nł	H ₄) ₃ PO ₄			
Y		Cu(NO ₃) ₂		\rightarrow	CuO	+	NO ₂	+	O ₂
Z	$C_5H_{11}OH$	+	O ₂	\rightarrow	CO ₂	+	H_2O		
Extension (1)	$C_{18}H_{38}$	+	O ₂	\rightarrow	CO ₂	+	H_2O		
Extension (2)	NH_3	+	O ₂	\rightarrow	NO	+	H ₂ O		
Extension (3)	HNO ₃	+	Cu	\rightarrow	Cu(NO ₃) ₂	+	NO_2	+	H ₂ O

BALANCING EQUATION QUESTIONS 2

1 State the number of each type of atom in the following. Where the formula has a balancing number, take the balancing number into account when working out the number of each type of atom.

а	Ga_2O_3	no. of Ga =		no. of O =					
b	HNO ₃	no. of H =	no of N	=	no. d	no. of $O =$			
С	$AI_2(SO_4)_3$	no. of S =	no of O	no of O =		no. of Al =			
d	2MgCl ₂	no. of Mg =	no of Cl	=					
е	3Ca(NO ₃) ₂	no. of O =	no of Ca	=	no. d	of N =			
2. E	Balance the following	equations							
А	H ₂	+	Br ₂	\rightarrow	HBr				
В	Cu	+	O ₂	\rightarrow		CuO			
С	Na	+	H ₂ O	\rightarrow	NaOH	+	H ₂		
D	Mg(OH	l) ₂ +	HNO₃	\rightarrow	Mg(NO ₃) ₂	+	H ₂ O		
Е	Li	+	O ₂	\rightarrow	Li ₂ O				
F	AI	+	O ₂	\rightarrow	AI_2O_3				
G	КОН	+	H_2SO_4	\rightarrow	K_2SO_4	+	H ₂ O		
Η	CaCO	3 +	HCI	\rightarrow	CaCl ₂	+	CO ₂	+	H_2O
Ι	C ₂ H ₆	+	O ₂	\rightarrow	CO_2	+	H ₂ O		
J		Cu(NO ₃) ₂		\rightarrow	CuO	+	NO ₂	+	O ₂
K	Ca(HCC) ₃) ₂ +	HNO ₃	\rightarrow	Ca(NO ₃) ₂	+	CO ₂	+	H_2O
L	C ₃ H ₇ O	H +	O ₂	\rightarrow	CO ₂	+	H ₂ O		
М	NH ₄ Oł	4 +	H_2SO_4	\rightarrow	(NH ₄) ₂ SO ₄	+	H ₂ O		
Ν	CH_4	+	O ₂	\rightarrow	CO	+	H ₂ O		
0	Ru ₂ O	3 +	CO	\rightarrow	Ru	+	CO ₂		
Ρ	Ga ₂ Sa	3 +	HNO ₃	\rightarrow	Ga(NO ₃) ₃	+	H_2S		
Q	H ₃ PO	4 +	Cu(HCO ₃) ₂	\rightarrow	Cu ₃ (PO ₄) ₂	+	CO ₂	+	H_2O

Balancing Equations Extension

Extension 1			Br ₂	+	KOH	\rightarrow	KBrO ₃ +	KBr	+ H ₂ (0		
Extension 2	C_2H_5OH	+	Na ₂ Cr ₂ O ₇	+	H_2SeO_4	\rightarrow	CH₃COOH	+	Cr ₂ (SeO	4)3 +	H ₂ O +	Na ₂ SeO ₄
Extension 3	V		+		HCIS ₃	\rightarrow	V_2S_5	+	CIS_2	+	H_2S	
Extension 4	HNO ₃		+		Cu	\rightarrow	Cu(NO ₃)	2 +		NO	+	H ₂ O

1 Define the terms (a) molecule (b) compound

Please note for Q2 , Q3 and Q4

- state all the formulae that answer the question (ie there could be up to 5/6 answers for each)
- If a compound contains a metal then it is unlikely to be a molecule

2(a). (b). (c).	From From From	MgBr ₂ MgBr ₂ MgBr ₂	Br ₂ Br ₂ Br ₂	CO	CaO (D₂ D₂ D₂	state which represent molecules state which represent compounds state which represent elements
3(a) (b) (c)	From From From	CO_2 CO_2 CO_2	InF₃ InF₃ InF₃	I₃ PBr₅ I₃ PBr₅ I₃ PBr₅	Sb ₂ S	55	state which <i>are both</i> elements and molecules state which <i>are both</i> molecules and compounds state which are compounds <i>but not</i> molecules
4(a) (b) (c) (d)	From From From From	Mn ²⁺ Mn ²⁺ Mn ²⁺ Mn ²⁺		2	CO ₃ ²⁻ CO ₃ ²⁻ CO ₃ ²⁻ CO ₃ ²⁻	MnO ₄ MnO ₄ MnO ₄ MnO ₄	state which are ions state which are compounds state which are compound ions state which are molecular ions

Section B Symbols, Formulae and names

1(a)	ls	0 ²⁻	called an oxygen ion or an oxide ion?
(b)	ls	Ca ²⁺	called a calcium ion or a calcide ion?
(c)	ls	Si⁴⁻	called a silicon ion, a silicide ion or a silicate ion?
(d)	ls	CO ₃ ²⁻	called a carbon ion, a carbide ion or a carbonate ion?

2(a) What can you tell (in general) when the name of an ion has an -ide ending eg nitride ion?

(b) What can you tell (in general) when the name of an ion has an -ate ending eg nitrate ion?

(c) Give the names and formulas of three common non metal –ate ions

- 3 Give the names of the following so that the person reading the name can tell them all apart from just the name *ie use molecule / atom / ion etc after the name* (a) H (b) H_2 (c) H^+ (d) H^-
- 4 Give the names of the following so that the person reading the name can tell them all apart from just the name (a) S^{2-} (b) S (c) SO_2 (d) S_8 e) SO_4^{2-}
- 5 Give the names of the following so that the person reading the name can tell them all apart from just the name (a) Fe^{2+} (b) Fe^{3+} (c) MnO (d) MnO_2 (e) MnO_4^-
- 6 Give the formula of the ions present in the following dissolve AND ALSO give the numbers of each type of ions present eg Na₂O = $2Na^+ + O^{2^-}$

a) NaCl b) HCl c MgBr₂ d Al₂O₃ e LiOH f H₂SO₄ g Ca(OH)₂ h H₃PO₄ i) HClO j) (NH₄)₂CO₃ k H₂TeO₃ l Cf₂(TeO₃)₃ m CaC₂O₄ n Sm₂(C₂O₄)₅ o) Name a-l

1. Formulae from names $\ :$ using the periodic table write the formula for the following ions

а	oxide ion	b	sodium ion
	Aluminium ion		bromide ion
С			
е	nitride ion	f	magnesium ion
g	sulfide ion	h	cobalt ion
i	silver ion	j	iron(II) ion
k	iron(III) ion	I	lead(IV) ion
m	phosphide ion	n	bismuth ion
0	selenide ion	р	carbide ion
q	polonium ion	r	hydrogen ion
S	hydride ion	t	copper(I) ion
2.	Write the formula for the follo	wing	ions
а	carbonate ion	b	nitrate ion
С	ammonium ion	d	
•		ŭ	
е	hydroxide ion		

f hydrogencarbonate ion

3.Suggest the names of the following ions

	C ⁴⁻	b	CO ₃ ²⁻
С	Si ⁴⁻	d	SiO ₃ ²⁻
	N ³⁻	f	NO_3^-
g	P ³⁻	h	PO4 ³⁻
i	Cl	j	CIO ₃ ⁻
k	S ²⁻	Ι	SO4 ²⁻
m	Br⁻	n	BrO ₃ ⁻
0	Se ²⁻	р	SeO ₄ ²⁻
q	Г	r	IO_3^-
	Te ²⁻	t	TeO₄ ²⁻
u	As ³⁻		

4.Suggest the names of the following

а	Cl ₂	b Cl
С	Cl	d Cl⁺
е	CIO_3^-	f HCl(g)
g	HCl(aq)	h HClO₃(aq)

5.Suggest the names of the following

а	Br ₂	b Br
С	Br⁻	d Br⁺
е	BrO ₃ ⁻	f HBr(g)
g	HBr(aq)	h HBrO₃(aq)

5. State the two ions AND The number of

<u>each type of ion</u> of the following. Note some can be worked out by knowing just the formula of one ion and by knowing that overall the compound has no charge)

cha	arge)				
EX	AMPLE	answer			
Ca(OH)₂		Ca ²⁺	+	2 OH ⁻	
а	NaCl				
b	Na ₂ O				
С	BaBr ₂				
d	Al(OH) ₃				
	K_2SO_4				
f	$Ca(NO_3)_2$				
g	MgCO ₃				
h	$Ga_2(CO_3)_3$				
Ι	Pb(SO ₄) ₂				
j	CuCl ₂				
k	Fe ₂ O ₃				
I	Mg(NO ₃) ₂				
m	CaSO ₄				
n					
0	NH₄Cl				
р	KNO ₃				
q	NH_4NO_3				
r	NH₄OH				
S	$Mg(HCO_3)_2$				
t	NaHCO ₃				
u	(NH ₄) ₂ SO ₄				
v	FeCO ₃				
W	$Ca_3(PO_4)_2$				
х	K ₃ PO ₄				
У	MgSiO ₃				
Ζ	In(NO ₃) ₃				
EX	TENSION				
α	$Ca(MnO_3)_2$				
β	Na ₂ CrO ₄				
χ	Sr(ClO ₃) ₂				
δ	$Ga_2(SeO_3)_3$				
3	Cf(NO ₃) ₃				
φ	$Au_2(CO_3)_3$				
•					

 γ (NH₄)₃PO₄

Q6 Name 5a to γ (inclusive)

FORMULAE FROM NAMES OF IONIC COMPOUNDS (1)

Compound	+ve	-ve ion	FORMULA	Compound	+ve ion	-ve ion	FORMULA
Sodium chloride				Gallium hydrogencarbonate			
Barium oxide				Ammonium hydrogencarbonate			
Magnesium chloride				Potassium hydrogencarbonate			
Potassium oxide				Iron(II)hydrogencarbonate			
Copper(I) oxide				Bismuth(V)hydroxide			
Aluminium Bromide				Gold(III)oxide			
Lead(IV)fluoride				Aluminium sulphate			
Tin(IV)oxide				Silver carbonate			
Aluminium oxide				Chromium(IV)oxide			
Bismuth(V)bromide				Strontium nitrate			
Vanadium(V) oxide				Potassium phosphate			
Polonium(VI)iodide				Tin nitrate			
Polonium(VI)oxide				Ammonium sulphate			
Sodium sulphide				Calcium silicate (guess)			
Sodium sulphate				Titanium(IV) sulphate			
lithium sulphde				Ammonium carbonate			
Magnesium hydroxide				Bismuth(V) Hydrogencarbonate			
Ammonium hydroxide				thallium sulfide			
Lithium hydroxide				silver iodide			
Thallium(III)hydroxide				Iron(III)oxide			
magnesium nitride				calcium fluoride			
calcium nitrate				zinc sulphate			
Barium nitrate				Bismuth(III) astatide			
Lithium phosphide				tin(II)nitrate			
Ammonium phosphate				Antimony(V) selenide			
Aluminium phosphate				Rubidium nitride			
Sodium carbonate				potassium sulphate			
Calcium carbide				sodium ethanoate			
Strontium carbonate				Zirconium(IV) selenate (guess)			

IONIC FORMULAE 2

Compound	+ve -ve FORMULA ion		FORMULA	Compound	+ve ion	-ve ion	FORMULA
Barium sulphate				Gallium hydrogencarbonate			
Sodium carbonate				Sodium oxide			
caesium sulphide				Lithium sulphate			
Ammonium sulphate				Calcium Iodide			
Copper(I) oxide				strontium hydroxide			
Lithium hydrogencarbonate				Indium oxide			
Strontium hydroxide				Platinum(II)chloride			
Copper(II)carbonate				Potassium selenide			
Zinc hydrogen carbonate				Rubidium sulphate			
Aluminium nitrate				Calcium carbonate			
Ammonium carbonate				Gallium nitride			
Silver carbonate				Aluminium hydroxide			
Barium nitrate				Gold nitrate			
Aluminium fluoride				Calcium silicate (guess)			
Potassium sulphate				Titanium(IV) oxide			
Francium astatide				Ammonium nitride			
Magnesium hydroxide				Bismuth(V) oxide			
Ammonium bromide				Gallium telluride			
Indium carbonate				Copper(II)hydroxide			
Magnesium hydroxide				Iron(III) hydrogencarbonate			
Silver sulphate				Lithium phosphide			
Nickel(II) Chloride				Cadmium Nitride			

EXTENSION FORMULA QUESTIONS: (1) By looking for patterns in the formulae below, try to find a link between the: Roman Numerals, number of oxygens, overall charge on the ion and the position of the element in the periodic table for the formulas below. Suggest what the Roman Numerals may represent.									
Chlorate(I) ion = ClOChlorate(V) ion = ClO3Bromate(I) ion = BrOphosphate(V) ion = PO_4^{3-} phosphate(III) ion = PO_3^{3-} sulphate(VI) ion = SO_4^{2-} Sulphate(IV) ion = SO_3^{2-} Nitrate(V) ion = NO_3^{-} Nitrate(III) ion = NO_2^{-} Selenate(IV) ion = SO_3^{2-} Sulphate(IV) ion = SO_3^{2-} Nitrate(V) ion = NO_3^{-}									
 2. Work out the formula of th a) ammonium chlorate(I) d) Polonium sulphate(VI) g) Iridium phosphate(V) 	ne following b) e) h)	lead(II)phosphate(V) Antinomy bromate(I) Bismuth Tellurate(IV)	c) f) i)	tin(IV)phosphate(III) Ruthenium(III)chlorate(V) Gallium lodate(V)					

FORMULAE OF COVALENT MOLECULES: Give the formula of the following (these have to be remembered)

Name	Formula	Name	Formula	Name	Formula
Water		Methane		Ethanoic acid	
Ammonia		Ethanol		Carbonic acid	
Glucose				Hydrogen peroxide	

(2) Formula which can be worked out just from the name and knowing number of atoms from the prefixes......

di = per	enta = mon(o) =	tetra =	tri=	hexa =	deca =	octa =
----------	-----------------	---------	------	--------	--------	--------

and the valency / oxidation number : give the common valency(s) for the groups

group	1	2	3	4	5	6	7	8
Valency(s)								

Compound	V 1 st	V 2 nd	FORMULA	Compound	FORMULA	V 1 st	V 2 nd	Does the valency agree with the formula?
Hydrogen fluoride				Carbon dioxide				
Selenium bromide				Phosphorus pentachloride				
Tellurium astatide				Nitrogen trichloride				
Hydrogen sulphide				Selenium dichloride				
Boron oxide				Carbon disulphide				
Boron hydride				Arsenic trioxide				
Hydrogen telluride				Oxygen difluoride				
Boron nitride				Diphosphorus pentoxide				
Germanium hydride				Sulphur dioxide				
Germanium(IV) oxide				Diantimony pentasulfide				
Phosphorus(III) oxide				Nitrogen monoxide				
Antimony(III) oxide				Disulphur dibromide				
Silicon(IV) oxide				Dinitrogen tetroxide				
Arsenic(V) sulphide				Sulphur trioxide				
Nitrogen(I) oxide				Tetraphosphorus decaoxide				
Selenium(VI) oxide				Xenon tetroxide				

EXTENSION: By doing the Extension Question on page 3 you may be able to work out the formulae of the following

Phosphoric(V)acid a)

Phosphoric(III)acid b)

- Chloric(V)acid
- nitric(III) acid j)

d)

- e) selenic(IV)acid
- k) Astatic(VII) acid
- Chloric(I)acid C) f)

I)

- Bromate(V)acid
- Chromic(VI)acid

Section A: Checking basics needed for balanced symbol equations, sheet 1

DATE:

1. Give the formulae of	the following	SCORE /15		
hydroxide ion	carbonate ion	nitric acid		
sulphate ion	Nitrate ion	Oxide ion		
Chloride ion	sulphuric acid	Zinc ion		
ammonium ion	Iron(III) ion	hydrochloric acid		
Sulphide ion	Ammonia	Silver ion		

Mg(s)	NaCl(s)	CO ₂ (g)	Cl ₂ (g)	HCI(g)	MgCl ₂ (s)	H ₂ O(I)
Br ₂ (aq)	NaCl(aq)	CO ₂ (aq)	Cl ₂ (aq)	HCl(aq)	MgCl ₂ (aq)	H ₂ SO ₄ (aq)

3. A possible area of confusion when writing eqautions is knowing when to use diatomic formula - ONLY when certain elements (H,F,Br,O,N,I,Cl,At) are uncombined and when not to use this list (all other times). For the equations below:

(i) Write above the equation whether the substance is I, C or M,

(ii) Then CIRCLE all the formulae that you need to use HFBrONICIAt with

Μ	С	I	
a) Calcium + (xygen ->	calcium oxide	b) Sodium + sulphur $ ightarrow$ sodium sulphide

c) hydrogen + oxygen \rightarrow water d) Iodine(aq) + calcium \rightarrow calcium iodide

e) Magnesium + hydrochloric acid(aq) \rightarrow magnesium chloride + hydrogen

f) Aluminium bromide(aq) + nitrogen \rightarrow aluminum nitride + bromine(aq)

g) Strontium carbonate + sulfuric acid (aq) \rightarrow strontium sulfate + carbon dioxide + water

h) Chlorine + hydrogen \rightarrow hydrogen chloride

i) Copper(I)oxide + nitric acid(aq) \rightarrow copper(I)nitrate + water

j) Silver + chlorine \rightarrow silver chloride

Section A: Checking basics needed for writing balanced symbol equations, sheet 2

DATE:

1. Give the formulae of	the following	SCORE /21
Chloride ion	Ammonia	nitric acid
sulphate ion	Sulphide ion	Silver ion
sulphuric acid	Zinc ion	ammonium ion
Nitrate ion	ethanoate ion	hydrochloric acid
carbonate ion	ethanoic acid	hydroxide ion
Iron(III) ion	Strontium ion	Nitride ion
Selenide ion	lodide ion	Phosphide ion

I/C or	Name	If C or M	if Ioni	c , work d	out ior	ns <u>then</u> nu	mber of each needed
M?		formula	no	+ve ion	no	- ve ion	formula
Ι	Sodium oxide		2	Na⁺	1	0 ²⁻	Na ₂ O
С	oxygen	02					
М	sodium	Na					
Ι	Calcium hydroxide		1	Ca ²⁺	2	OH ⁻	Ca(OH) ₂
	Carbon dioxide						
	Magnesium oxide						
	Iron(III) chloride						
	Chlorine						
	Barium chloride						
	Calcium carbonate						
	Sodium carbonate						
	Aluminum carbonate						
	silver sulphate						
	Iron(III) sulphate						
	Lead(IV) nitrate						
	Lead(IV) nitride						

Section A: Checking basics needed for writing balanced symbol equations, SEE PAGE 1 of notes for worked example

Step 1: Work out if *C*, *M* or *an acid* and write their formula below their name. Step 2: <u>Above</u> any ionic substance write the + and – ions and the number of each ion needed ; Step 3: Below write in the formula of each substance SEPARATELY – DO NOT LOOK AT ANY OTHER SUBSTANCE ; Step 4: Only balance (with big numbers in from of formula) when you have completed step 3, NOTE do not change any of the formula, you are only allowed to balance with big numbers in front

1.				
Aluminium	+ chlorine	\rightarrow	Aluminium chloride	

2.					
	Calcium carbonate	\rightarrow	Calcium oxide	+ carbon dioxide	

3.					
	sodium carbonate	\rightarrow	Sodium oxide	+ carbon dioxide	

4.					
Magnesium	+ hydrochloric acid	\rightarrow	Magnesium chloride	+ hydrogen	

5.					
Sodium hydroxide	+ nitric acid	\rightarrow	Sodium nitrate	+ water	

6.						
Calcium hydroxide	+ nitric acid	\rightarrow	Calcium nitrate	+	water	

7.					
Aluminium hydroxide	+ nitric acid	\rightarrow	Aluminium nitrate	+ water	

8.					
Lead(IV) hydroxide	+ nitric acid	\rightarrow	Lead(IV) nitrate	+ water	

9.					
potassium hydroxide	+ sulphuric acid	\rightarrow	potassium sulphate	+ water	

10.					
Gallium bromide	+ oxygen	\rightarrow	Gallium oxide	+ bromine	

Reaction of Acids 1 (a) Complete the word equation CHECK YOUR ANSWERS and then (b) Write balanced symbol equations

1. Magnesium + hydrochloric acid →
2. Calcium oxide + sulphuric acid \rightarrow
3. sodium hydroxide + nitric acid \rightarrow
4. Magnesium carbonate + hydrochloric acid \rightarrow
5. sodium hydrogencarbonate + sulphuric acid \rightarrow
6. silver oxide + hydrochloric acid \rightarrow
7. Lithium + sulphuric acid \rightarrow
9 Calcium hudrovida L nitria acid \rightarrow
8. Calcium hydroxide + nitric acid \rightarrow
9. potassium carbonate + hydrochloric acid \rightarrow
10. Barium hydrogencarbonate + nitric acid \rightarrow
11 subshuris asid \downarrow barium suida \rightarrow
11. sulphuric acid + barium oxide →
12. Gallium hydroxide + ethanoic acid \rightarrow

Reaction of Acids 2 (a) Complete the word equation CHECK YOUR ANSWERS and then (b) Write balanced symbol equations
1a → Aluminum sulphate + water
1b → Aluminum sulphate + water
2a \rightarrow lead(IV)nitrate + carbon dioxide + water
2b +
3 + magnesium → magnesium chloride +
4 + sulphuric acid → ammonium sulphate + water
5 + nitric acid → ammonium nitrate
6. copper(II) hydroxide + hydrobromic acid →
7. calcium hydrogencarbonate + phosphoric acid \rightarrow
8. Vandium(V)oxide +
9. ammonia + hydrochloric acid \rightarrow
10. strontium + → strontium nitrate +

Reaction of Acids 3 (a) Complete the word equation CHECK YOUR ANSWERS and then (b) Write balanced symbol equations
1. Tin(II) hydroxide + hydrochloric acid \rightarrow
2. Bismuth + nitric acid \rightarrow
3. Iron(III)carbonate + sulphuric acid \rightarrow
4. ammonium hydrogencarbonate + ethanoic acid \rightarrow
5. Copper(II)oxide + nitric acid \rightarrow
5. Copper(ii)Oxide + filtric acid ->
6. silver carbonate + phosphoric acid \rightarrow
7. ammonia + sulfuric acid \rightarrow
8. Calcium hydroxide + sulphuric acid \rightarrow
9. Caesium carbonate + hydroiodic acid \rightarrow
10. Polonium(VI) hydrogencarbonate + ethanoic acid \rightarrow
11 → Antimony(V)sulphate + hydrogen
12 → Thallium Chlorate + water

Reaction of Acids 4 1.. \rightarrow Indium nitrite + carbon dioxide + water 2. Rubidium oxide + hydrochloric acid \rightarrow ammonium phosphate 4. titanium + sulphuric acid \rightarrow (assume Ti(IV) ions formed) 5. silver oxide + phosphoric acid \rightarrow Aluminium bromide + hydrogen \rightarrow 7. Gallium hydrogencarbonate + nitric acid \rightarrow 8. Antimony(V)oxide + nitric acid \rightarrow 9. ammonia + phosphoric acid \rightarrow \rightarrow Lead(IV) bromate + water 10. + 11. → Antimony(III) sulphate + hydrogen

SECTION A : remember HF BrONICIAt

- 1 Calcium + oxygen \rightarrow calcium oxide
- 2 Sodium + sulphur \rightarrow sodium sulphide
- 3 hydrogen + oxygen \rightarrow water
- 4 lodine + calcium \rightarrow calcium iodide
- 5 Magnesium + hydrochloric acid \rightarrow magnesium chloride + hydrogen
- 6 Aluminium + bromine \rightarrow aluminum bromide
- 7 Strontium carbonate + sulfuric acid \rightarrow strontium sulfate + carbon dioxide + water
- 8 Chlorine + hydrogen \rightarrow hydrogen chloride
- 9 Copper(I)oxide + nitric acid \rightarrow copper(I)nitrate + water
- 10 Silver + oxygen \rightarrow silver oxide
- 11 Tin + oxygen \rightarrow Tin(IV) oxide
- 12 Sodium + water \rightarrow sodium hydroxide + hydrogen
- 13 Calcium hydroxide + hydrochloric acid \rightarrow calcium chloride + water
- 14 Magnesium + water \rightarrow magnesium hydroxide + hydrogen
- 15 Barium nitrate \rightarrow barium oxide + nitrogen dioxide + oxygen

SECTION B Formation of oxides

- a copper + oxygen \rightarrow copper(II)oxide
- b copper + oxygen \rightarrow copper(I)oxide
- c nitrogen + oxygen \rightarrow nitrogen monoxide
- d nitrogen monoxide + oxygen \rightarrow nitrogen dioxide
- e methane + oxygen \rightarrow carbon monoxide + water
- f phopshorus (P_4)+ oxygen \rightarrow tetraphosphorus hexoxide
- g magnesium carbonate \rightarrow magnesium oxide + carbon dioxide
- h calcium hydroxide \rightarrow calcium oxide + water
- I Calcium nitrate \rightarrow calcium oxide + nitrogen dioxide + oxygen
- j aluminium carbonate \rightarrow aluminium oxide + carbon dioxide
- k Lithium nitrate \rightarrow lithium oxide + nitrogen dioxide + oxygen

SECTION C displacement

- a) sodium oxide + potassium \rightarrow potassium oxide + sodium
- b) Lithium + strontium oxide \rightarrow lithium oxide + strontium
- c) Zinc oxide + carbon monoxide \rightarrow carbon dioxide + zinc
- d) Copper(II) sulphate + magnesium → magnesium sulphate + copper
- e) Aluminium chloride + lithium \rightarrow lithium chloride + aluminium
- f) copper(II)nitrate + Gallium \rightarrow Gallium nitrate + copper
- g) chlorine + sodium bromide \rightarrow sodium bromide + chlorine
- h) Thallium iodide + bromine \rightarrow thallium bromide + iodine
- i) phosphorus(III) fluoride + nitrogen \rightarrow phosphorus + nitrogen fluoride

SECTION D: Reaction of Oxides

- (a) Lithium oxide + water \rightarrow lithium hydroxide
- (b) Calcium hydroxide + carbon dioxide \rightarrow calcium carbonate + water
- (c) sulphur trioxide + water \rightarrow sulphuric acid
- (d) Sulphuric acid + sodium oxide \rightarrow sodium sulphate + water
- (e) magnesium oxide + Hydrochloric acid \rightarrow magnesium chloride + water
- (f) Sulphur trioxide + Calcium oxide \rightarrow calcium sulphate
- (g) Aluminium oxide + water \rightarrow Aluminium hydroxide
- (h) carbon dioxide + water \rightarrow carbonic acid
- (i) Strontium hydroxide + nitric acid \rightarrow strontium nitrate + water
- (I) Sulphuric acid + Gold(I) oxide \rightarrow Gold(I) sulphate + water
- (m) Potassium hydroxide + carbon dioxide \rightarrow potassium carbonate + water
- (n) Lead(II)oxide + Nitrogen dioxide + oxygen → Lead(II) nitrate
- (o) Hydrochloric acid + Aluminium oxide \rightarrow aluminium chloride + water
- (p) Gallium hydroxide + nitric acid \rightarrow Gallium nitrate + water
- EXTENSION (r) Tin(IV)oxide + phosphoric acid → Tin(IV)phosphate + water
- EXTENISON (q) Silicon dioxide + Thallium(III) oxide \rightarrow Thallium(III) silicate

SECTION E Miscellaneous 1

- a Aluminium hydroxide \rightarrow aluminium oxide + water
- b Lithium nitrate \rightarrow lithium oxide + nitrogen dioxide + oxygen
- c Potassium nitrate → Potassium nitrite + oxygen (look up nitrite ion)
- d Propane (C₃H₈) + oxygen \rightarrow carbon dioxide + water
- e Pentanol (C₅H₁₁OH) + oxygen \rightarrow carbon dioxide + water
- f Copper(II) nitride + oxygen → Copper(II) oxide + nitrogen monoxide + nitrogen dioxide
- g Ammonia + oxygen \rightarrow nitrogen monoxide + water
- h Bismuth(V) oxide + Phopshoric acid \rightarrow Bismuth(V) phosphate + water (look up sulphurous acid and sulphite ion)
- I Thallium(III) hydrogencarbonate + sulphurous acid → Thallium(III) sulphite + water + carbon dioxide
- j Lead(IV)oxide + sulphurous acid \rightarrow Lead(IV) sulphite + water
- k Polonium hydroxide + ammonium sulfate \rightarrow polonium sulfate + ammonia + water
- I zinc + nitric acid \rightarrow zinc(II)nitrate + nitrogen dioxide + water
- m Iron(III)oxide + carbon monoxide \rightarrow iron + carbon dioxide
- n gallium hydrogencarbonate + chloric acid \rightarrow gallium chlorate + water + carbo

SECTION F Miscellaneous 2

- 1 Thallium(III)sulphite + magnesium \rightarrow thallium + magnesium sulphite (look up sulphite ion)
- 2 Barium + nitrogen \rightarrow barium nitride
- 3 Iron(III)sulphate \rightarrow Iron(III)oxide + sulphur trioxide
- 4 Lithium nitrate \rightarrow lithium oxide + nitrogen dioxide + oxygen
- 5 alumium oxide + sodium hydroxide \rightarrow sodium aluminate + water (look up aluminate ion)
- 6 ammoniumcarbonate + nitrous acid \rightarrow ammonium nitrite + carbon dioxide + water (look up nitrous acid/nitrite ion)
- 7 gallium sulphide + hydrobromic acid \rightarrow gallium bromide + hydrogen sulphide
- 8 calcium hydroxide + phosphoric acid \rightarrow calcium phosphate + water
- 9 gallium hydrogencarbonate + chloric(V) acid → gallium chlorate(V) + water + carbon dioxide
- 10 Lead(IV)oxide + sulphurous acid \rightarrow Lead(IV)sulphite + water (look up sulphurous acid and sulphite ion)
- 11 Bismuth(V)hydroxide + ammonium sulfate \rightarrow bismuth(V)sulfate + ammonia + water
- 12 Zinc oxide + Aluminum hydroxide → aluminium zincate + water (look up zincate ion)

SECTION G: From the following, write the word equation and then the full balanced equation

- 1 aluminium + iodine
- 2 potassium hydroxide + sulphuric acid
- 3 lithium + oxygen
- 4 lead(II) oxide with nitric acid
- 5 polonium + nitrogen
- 6 ammonium carbonate + hydrochloric acid
- 7 water + sodium
- 8 Iron(II)hydrogencarbonate + phosphoric acid
- 9 calcium + water
- 10 Gallium + chloric acid
- 11 carbon dioxide + sodium hydroxide
- 12 Thermal decomposition of aluminium nitrate
- 13 complete combustion of CH₃SH
- 14 silicon oxide + sodium oxide \rightarrow
- 15 gallium + hydroiodic acid
- 16 carbon dioxide + aluminium oxide → ONE PRODUCT
- 17. sulphur trioxide + copper oxide \rightarrow ONE PRODUCT
- 18 magnesium hydroxide + aluminium oxide \rightarrow magnesium aluminate + water
- 19. nitrogen dioxide + oxygen + barium oxide → ONE PRODUCT
- 20 carbon dioxide + sodium oxide \rightarrow ONE PRODUCT
- 21. phosphorous trioxide + calcium oxide + oxygen
- 22. Incomplete combustion of dodecane
- 23. Comubstion of ammonia
- 24. Formation of phosphorus pentachloride from its elements
- 25. Formation of dichlorine heptaoxide from

ANSWERS

BALANCING EQUATIONS 1

A PbO ₂	no. of P	b =1	no. of (O = 2						
b Al(NO ₃) ₃	no. of Al =1		no. of (no. of O =9		no. of N =3				
c Bi ₂ (SeO ₃) ₅	no. of B	i =2	no. of (O =15	no. o	of Se =5				
d 2 Li ₂ S	no. of Li	i = 4	no of S	= 2						
e 3H ₂ SO ₄	no. of H	= 6	no. of (O = 12	no. o	of S =3				
f 2(NH ₄) ₃ As	O ₄ no. of H	=24	no. of (D =8	no. of As =	2	No of N = 6			
	following equation as give ½ a C aton		ok for diatomi	cs eg 3.5 O ₂	is fine as it lea	ads to a v	whole number	of atoms, cant do		
A	H ₂	+	Cl ₂	\rightarrow	2HCl					
В	2Ba	+	0 ₂	\rightarrow		2BaO				
С	2HCl	+	Mg	\rightarrow	MgCl ₂	+	H ₂			
D	<mark>2</mark> К	+	2H₂O	\rightarrow	<mark>2</mark> КОН	+	H_2			
E	Mg(OH) ₂	+	2HNO₃	\rightarrow	Mg(NO ₃) ₂	+	<mark>2</mark> H₂O			
F	H ₂ SO ₄	+	2Na	\rightarrow	Na_2SO_4	+	H_2			
G	<mark>4</mark> In	+	<mark>3</mark> 0 ₂	\rightarrow	2In₂O₃					
H PbCO₃	+	2HCI	\rightarrow	PbCl ₂	+	CO2	+	H₂O		
I	Ca(OH) ₂	+	H_2SeO_4	\rightarrow	CaSeO ₄	+	2H₂O			
J	2Na	+	2HCI	\rightarrow	2NaCl	+	H ₂			
К	2LiOH	+	H ₂ SO ₄	\rightarrow	Li ₂ SO ₄	+	2H₂O			
L CaCO ₃	+	2HNO₃		Ca(NO ₃) ₂	+	CO2	+	H₂O		
Μ	2NH₄OH	+	H_2SeO_4	\rightarrow	(NH ₄) ₂ SeO ₄		2H ₂ O	-		
N Ba(HCO ₃) ₂	+ 2HNO₃	\rightarrow	Ba(NO ₃) ₂	+	2CO ₂	+	2H₂O			
0	2AI	+	6HNO ₃	\rightarrow	2AI(NO ₃) ₃	+	<mark>3</mark> H ₂			
Р	2C ₂ H ₆	+	50 ₂	\rightarrow		+	- 6H₂O			
Q In ₂ (CO ₃) ₃	+ <mark>6</mark> HCl	\rightarrow	- 2InCl₃	+	<mark>3</mark> H₂O	+	3CO ₂			
R	Ru ₂ O ₃	+	<mark>3</mark> CO	\rightarrow	2Ru	+	3CO ₂			
S	Ga ₂ S ₃	+	<mark>6</mark> HNO₃	\rightarrow	<mark>2</mark> Ga(NO₃)₃	+	- 3H₂S			
T <mark>2</mark> H ₃ PO ₄ +	² ³ Cu(HCO ₃) ₂	\rightarrow	Cu ₃ (PO ₄) ₂	+	6CO ₂	+	6H₂O			
U	2C ₄ H ₁₀	+	13 0 ₂	\rightarrow	8CO ₂	+	10 H ₂ O			
V	2RbOH	+	H ₂ TeO ₄	\rightarrow	Rb ₂ TeO ₄	+	2H ₂ O			
W	2CH₃OH	+	3 0 ₂	<i>→</i>	2 CO ₂	+	4H ₂ O			
x	3 NH ₃	+	H ₃ PO ₄	\rightarrow		H ₄) ₃ PO ₄				
Y	2Cu(NO ₃) ₂	-	→	2CuO		4NO ₂	+	02		
Z	2C ₅ H ₁₁ OH	+	15 0 ₂	∠ cuo →	10 CO ₂	+	<mark>12</mark> H₂O	U 2		
(1)	2C ₁₈ H ₃₈	+	55 0 ₂	\rightarrow	36 CO ₂	+	38 H ₂ O			
(1)	4NH ₃	+	50 ₂	\rightarrow	4 NO	+	6H ₂ O			
(3) 4 HNO ₃	+ Cu	\rightarrow	Cu(NO ₃) ₂	+	2 NO ₂	+	2H2O			

BALANCING EQUATION QUESTIONS 2

1 State the number of each type of atom in the following. Where the formula has a balancing number, take the balancing number into account when working out the number of each type of atom.

а	Ga ₂ O ₃ no. of Ga	= 2	no. of O	= 3					
b	HNO ₃ no. of H =	1	no of N	= 1	no. c	of O =3			
С	$AI_2(SO_4)_3$ no. of S =	3	no of O	= 12	no. c	of Al = 2			
d	2MgCl ₂ no. of Mg	= 2	no of Cl	= 4					
e	3Ca(NO ₃) ₂ no. of O =	18	no of Ca	= 3	no. c	of N = 6			
2 . E	Balance the following equations								
А	H ₂	+	Br ₂	\rightarrow	2HBr				
В	Cu	+	0.5 O ₂	\rightarrow		CuO			
С	Na	+	H ₂ O	\rightarrow	NaOH	+	0.5 H ₂		
D	Mg(OH) ₂	+	2HNO ₃	\rightarrow	Mg(NO ₃) ₂	+	2 H ₂ O		
Ε	2Li	+	0.5 O ₂	\rightarrow	Li ₂ O				
F	2 AI	+	1.5 0 ₂	\rightarrow	AI_2O_3				
G	2 КОН	+	H_2SO_4	\rightarrow	K ₂ SO ₄	+	2 H ₂ O		
Н	CaCO ₃	+	2HCI	\rightarrow	CaCl ₂	+	CO2	+	H ₂ O
I	C_2H_6	+	3.5 0 ₂	\rightarrow	2 CO ₂	+	3 H ₂ O		
J		Cu(NO ₃) ₂		\rightarrow	CuO	+	2 NO ₂	+	0.5 0 ₂
К	Ca(HCO ₃) ₂	+	2HNO ₃	\rightarrow	Ca(NO ₃) ₂	+	2 CO ₂	+	2H ₂ O
L	C ₃ H ₇ OH	+	4.5 0 ₂	\rightarrow	3CO ₂	+	4 H ₂ O		
М	2NH₄OH	+	H ₂ SO ₄	\rightarrow	(NH ₄) ₂ SO ₄	+	2 H ₂ O		
Ν	CH_4	+	1.5 0 ₂	\rightarrow	СО	+	2 H ₂ O		
0	Ru ₂ O ₃	+	3 CO	\rightarrow	2Ru	+	3CO ₂		
Ρ	Ga ₂ S ₃	+	6HNO ₃	\rightarrow	2Ga(NO ₃) ₃	+	<mark>3</mark> H₂S		
Q	2H ₃ PO ₄	+	3Cu(HCO ₃) ₂	\rightarrow	Cu ₃ (PO ₄) ₂	+	6CO ₂	+	<mark>6</mark> H₂O
Bal	ancing Equations Extension								

Extension 1			3Br ₂	+ <mark>6</mark> KOH	→ кі	BrO ₃ +	5KBr +	3 H₂O			
Extension 2	C_2H_5OH	+	$Na_2Cr_2O_7 +$	H_2SeO_4	→ CH ₃ C	соон +	Cr ₂ (SeO ₄)	3 +	H ₂ O +	Na₂SeO	4
Extension 3	V		+	HClS ₃	\rightarrow	V_2S_5	+ CIS	2	+	H₂S	
Extension 4	HNO₃		+	Cu	\rightarrow	Cu(NO₃)	2 +		NO	+	H_2O

Recognising atoms, silielements, molecules, compounds, ions – Page 4

1a. Molecule- made up of 2 or more atoms covalently bonded together

b. Compound- substance made up of 2 or more different types of atoms chemically bonded together

2a. $Br_2 CO O_2$ b. $MgBr_2 CO CaO$ c. $Br_2 O_2$

3a. I_3 b. CO₂ PBr₅

c. InF₃ Sb₂S₅ [ionic compounds are not, overall, classed as molecules, though can contain molecular ions eg NH₄NO₃]

4a. $Mn^{2+} Cl^{-} CO_{3}^{2-} MnO_{4}^{-}$ b. $CO_{2} CO_{3}^{2-} MnO_{4}^{-}$ c. $CO_{3}^{2-} MnO_{4}^{-}$ d. $CO_{3}^{2-} [+MnO_{4}^{-} A \text{ level}]$

Section B Symbols, Formulae and names

1. ovido ion	$6a. Na^{+} + Cl^{-}$
1a. oxide ion	
b. calcium ion	b. $H^+ + Cl^-$
c. silicide ion	c. $Mg^{2+} + 2Br^{-}$
d. carbonate ion	d. $2AI^{3+} + 3O^{2-}$
	e. Li⁺ + OH
2a. has the general formula X^{n-} where $X = non-metal$	f. $2H^+ + SO_4^{2-}$
ion (usually exception OH ⁻)	g. Ca ²⁺ + 2OH
b. has the general formula XO _y ⁿ⁻	h. $3H^{+} + PO_{4}^{-3-}$
c) It's has positive charge and usual a metal ion	i. $H^+ + ClO_3^-$
d. e.g. Nitrate ion - NO_3 , Carbonate ion- CO_3^2 ,	j. $2NH_4 + CO_3^{2-}$
Sulfate ion- $SO_4^{2^-}$ [A level Manganate ion MnO ₃]	k. $2H^{+} + TeO_{4}^{2}$
	I. 2Cf ³⁺ + 3TeO ₄ ²⁻
	m. $Ca^{2+} + C_2O_4^{2-}$
3a. hydrogen atom	n. $2\text{Sm}^{5+} + 5\text{C}_2\text{O}_4^{2-}$
b. hydrogen molecule	o. a) sodium chloride
c. hydrogen ion	b) hydrogen chloride
d. hydride ion	c) magnesium bromide
	d) aluminium oxide
4a. sulfide ion	e) lithium hydroxide
b. sulfur atom	f) sulfuric acid
c. sulfur ion	g) calcium hydroxide
d. sulfur molecule	h) phosphoric acid
e. sulfur dioxide	i) chloric acid
f. sulfate ion	j) ammonium carbonate
	k) telluric acid
5a. Iron(II) ion	l) californium(III) tellurate
b. Iron(III) ion	
c. Manganese(II)oxide or Manganese oxide	
d. Manganese dioxide or Manganese(IV)oxide	
e. Manganate ion or Manganate(V) ion	

1. Formulae from names : using the periodic table write the formula for the following ions

a c g i k m o q s	oxide ion O^{2-} Aluminium ion Al^{3+} nitride ion N^{3-} sulfide ion S^{2-} silver ion Ag^{+} iron(III) ion Fe^{3+} phosphide ion P^{3-} selenide ion Se^{2-} polonium ion Po^{6+} hydride ion H^{-}	d	sodium ion Na ⁺ bromide ion Br ⁻ magnesium ion Mg ²⁺ cobalt ion Co ²⁺ iron(II) ion Fe ²⁺ lead(IV) ion Pb₄ ⁺ bismuth ion Bi ³⁺ carbide ion C ⁴⁻ hydrogen ion H ⁺ copper(I) ion Cu ⁺
S	nyariae ion H	τ	copper(I) Ion Cu
2.	Write the formula for th	ne f	ollowing ions
a c e	carbonate ion CO₃²⁻ ammonium ion NH₄⁺ hydroxide ion OH ⁻		b nitrate ion NO₃⁻ d sulphate ion SO₄²⁻

f hydrogencarbonate ion HCO3⁻

3.Suggest the names of the following ions

а	C ⁴⁻ Carbide ion	b CO_3^{2-} Carbonate ion
с	Si ⁴⁻ Silicide ion	d SiO_3^{2} - Silicate ion
е	N ³⁻ Nitride ion	$f NO_3$ Nitrate ion
g	P ³⁻ Phosphide ion	h PO4 ³⁻ Phosphate ion
i	Cl ⁻ Chloride ion	j ClO_3 Chlorate ion
k	S ²⁻ Sulfide ion	$1 SO_4^{2}$ Sulphate ion
m	Br - Bromide ion	n BrO ₃ Bromate ion
0	Se ²⁻ Selenide ion	p SeO ₄ ²⁻ Selenate ion
q	l ⁻ lodide ion	$r IO_3$ lodate ion
S	Te ²⁻ Telluride ion	t TeO_4^{2-} Tellurate ion
u	As ³⁻ Arsenide ion	

Question 4

- a) Chlorine molecule
- b) Chlorine atom
- c) Chloride ion
- d) Chlorine ion
- e) Chlorate ion
- f) Hydrogen chloride
- g) Hydrochloric acidh) Chloric acid

Question 5

- i) Bromine molecule
- j) Bromine atom
- k) Bromide ion
- I) Bromine ion
- m) Bromate ion
- n) Hydrogen bromide
- o) Hydrobromic acid
- p) Bromic acid

Question 5	Questio	
a) Na⁺ + Cl⁻	a)	Sodium chloride
b) 2Na⁺ + O²-	b)	Sodium oxide
c) Ba²+ + 2Br⁻	c)	Barium bromide
d) Al ³⁺ + 3OH ⁻	d)	Aluminium hydroxide
e) 2K ⁺ + SO ₄ ²⁻	e)	Potassium sulphate
f) Ca ²⁺ + 2NO ₃ -	f)	Calcium nitrate
g) Mg ²⁺ + CO ₃ ²⁻	g)	Magnesium carbonate
h) 2Ga ³⁺ + 3CO ₃ ²⁻	h)	Gallium carbonate
i) Pb ⁴⁺ + 2SO ₄ ²⁻	i)	Lead(IV) sulphate
j) Cu ²⁺ + 2Cl ⁻	j)	Copper(II) chloride
k) 2Fe ³⁺ + 3O ²⁻	k)	Iron (III) oxide
l) Mg ²⁺ + 2NO ₃ -	I)	Magnesium nitrate
m) Ca ²⁺ + SO ₄ ²⁻	m)	Calcium sulphate
n) 2Li⁺ + CO ₃ ²-	n)	Lithium carbonate
o) NH₄⁺ + Cl⁻	o)	Ammonium chloride
p) K⁺ + NO₃⁻	p)	Potassium nitrate
q) NH4 ⁺ + NO3 ⁻	q)	Ammonium nitrate
r) NH₄⁺ + OH⁻	r)	Ammonium hydroxide
s) Mg ²⁺ + 2HCO ₃ -	s)	Magnesium hydrogen carbonate
t) Na⁺ + HCO₃⁻	t)	Sodium hydrogen carbonate
u) 2NH ₄ + + SO ₄ ²⁻	u)	Ammonium sulphate
v) Fe ²⁺ + CO ₃ ²⁻	v)	Iron(II) carbonate
w) 3Ca ²⁺ + 2PO ₄ ³⁻	w)	Calcium phosphate
x) 3K ⁺ + PO ₄ ³⁻	x)	Potassium phosphate
y) Mg ²⁺ + SiO ₃ ²⁻	y)	Magnesium silicate
z) In ³⁺ + 3NO ₃ -	z)	Indium nitrate
α) Ca ²⁺ + 2MnO ₃ ⁻	α)	Calcium manganate
β) 2Na ⁺ + CrO ₄ ²⁻	β)	Sodium chromate
χ) Sr ²⁺ + 2ClO ₃ ⁻	χ)	Strontium chlorate
ϵ) Cf ³⁺ + NO ₃		Californium(III) nitrate
ϕ) 2Au ³⁺ + 3CO ₃ ²⁻	-	Gold (III) carbonate
γ) 3NH ₄ ⁺ + PO ₄ ³⁻	• •	Ammonium phosphate
<i>yysnn</i> ⁴ <i>i i i s</i> ⁴	۲)	
L		

FORMULAE FROM NAMES OF IONIC COMPOUNDS (1)

FORMULAE FROM N Compound	+ve	-ve ion	FORMULA	Compound	+ve ion	-ve ion	FORMULA
Sodium chloride	Na⁺	CI	NaCl	Gallium hydrogencarbonate	Ga ³⁺	3HCO3	Ga(HCO₃)₃
Barium oxide	Ba ²⁺	0 ²⁻	BaO	Ammonium hydrogencarbonate	${\rm NH_4}^+$	HCO ₃	NH₄HCO₃
Magnesium chloride	Mg ²⁺	2Cl ⁻	MgCl ₂	Potassium hydrogencarbonate	K⁺	HCO ₃	KHCO₃
Potassium oxide	2K ⁺	0 ²⁻	K ₂ O	Iron(II)hydrogencarbonate	Fe ²⁺	2HCO ₃	Fe(HCO ₃) ₂
Copper(I) oxide	2Cu⁺	0 ²⁻	Cu₂O	Bismuth(V)hydroxide	Bi ⁵⁺	50H ⁻	Bi(OH)₅
Aluminium Bromide	Al ³⁺	3Br ⁻	AlBr ₃	Gold(III)oxide	2Au ³⁺	30 ²⁻	Au ₂ O ₃
Lead(IV)fluoride	Pb ⁴⁺	4F ⁻	PbF ₄	Aluminium sulphate	2AI ³⁺	3SO4 ²⁻	Al ₂ (SO ₄) ₃
Tin(IV)oxide	Sn ⁴⁺	20 ²⁻	SbO ₂	Silver carbonate	2Ag⁺	CO3 ²⁻	Ag ₂ CO ₃
Aluminium oxide	2Al ³⁺	30 ²⁻	Al ₂ O ₃	Chromium(IV)oxide	Cr ⁴⁺	20 ²⁻	CrO ₂
Bismuth(V)bromide	Bi ⁵⁺	5Br ⁻	BiBr₅	Strontium nitrate	Sr ²⁺	2NO3 ⁻	Sr(NO ₃) ₂
Vanadium(V)oxide	2V ⁵⁺	50 ²⁻	V ₂ O ₅	Potassium phosphate	ЗК⁺	PO4 ³⁻	K ₃ PO ₄
Polonium(VI)iodide	Po ⁶⁺	6I ⁻	Pol ₆	Tin (II) nitrate	Sn ²⁺	2NO3 ⁻	Sn(NO ₃) ₂
Polonium(VI)oxide	Po ⁶⁺	30 ²⁻	PoO ₃	Ammonium sulphate	2NH4 ⁺	SO4 ²⁺	(NH ₄) ₂ SO ₄
Sodium sulphide	2Na ⁺	S ²⁻	Na₂S	Calcium silicate (guess) Silicon in same Gp as C	Ca ²⁺	SiO ₃ ²⁻	CaSiO₃
Sodium sulphate	Na⁺	SO4 ²⁻	Na ₂ SO ₄	Titanium(IV) sulphate	Ti ⁴⁺	2SO4 ²⁻	Ti(SO ₄) ₂
lithium sulphide	Li⁺	S ²⁻	Li ₂ S	Ammonium carbonate	${\rm NH_4}^+$	CO3 ²⁻	(NH ₄) ₂ CO ₃
Magnesium hydroxide	Mg ²⁺	OH	Mg(OH) ₂	Bismuth(V) Hydrogencarbonate	Bi ⁵⁺	HCO3	Bi(HCO₃)₅
Ammonium hydroxide	NH4 ⁺	OH	NH₄OH	thallium sulfide	2TI ³⁺	3S ²⁻	Tl₂S₃
Lithium hydroxide	Li⁺	OH	LiOH	silver iodide	Ag⁺	ſ	Agl
Thallium(III)hydroxide	TI ³⁺	30H	TI(OH)₃	Iron(III)oxide	2Fe ³⁺	30 ²⁻	Fe ₂ O ₃
magnesium nitride	Mg ²⁺	2N ³⁻	Mg ₃ N ₂	calcium fluoride	Ca ²⁺	2F ⁻	CaF ₂
calcium nitrate	Ca ²⁺	2NO ₃ ⁻	Ca(NO ₃) ₂	zinc sulphate	Zn ²⁺	SO4 ²⁻	ZnSO ₄
Barium nitrate	Ba ²⁺	2NO3 ⁻	Ba(NO ₃) ₂	Bismuth(III) astatide	Bi ³⁺	3At ⁻	BiAt ₃
Lithium phosphide	3Li ⁺	P ³⁻	Li ₃ P	tin(II)nitrate	Sn ²⁺	2NO3 ⁻	Sn(NO ₃) ₂
Ammonium phosphate	3NH4 ⁺	PO4 ³⁻	(NH ₄) ₃ PO ₄	Antimony(V) selenide	2Sb ⁵⁺	5Se ²⁻	Sb₂Se₅
Aluminium phosphate	Al ³⁺	PO4 ³⁻	AIPO4	Rubidium nitride	3Rb⁺	N ³⁻	Rb ₃ N
Sodium carbonate	2Na ⁺	CO3 ²⁻	Na ₂ CO ₃	potassium sulphate	2K ⁺	SO4 ²⁻	K₂SO₄
Calcium carbide	2Ca ²⁺	C⁴-	Ca₂C	sodium ethanoate	Na⁺	CH₃COO ⁻	CH₃COONa
Strontium carbonate	Sr ²⁺	CO ₃ ²⁻	SrCO ₃	Zirconium(IV) selenate Se in same group as S	Zr ⁴⁺	2SeO ₄ ²⁻	Zr(SeO ₄) ₂

IONIC FORMULAE 2

Compound	+ve	-ve ion	FORMULA	Compound	+ve ion	-ve ion	FORMULA
Barium sulphate	Ba ²⁺	SO4 ²⁻	BaSO ₄	Gallium hydrogencarbonate	Ga ³⁺	HCO ₃ ⁻	Ga(HCO ₃) ₃
Sodium carbonate	Na⁺	CO3 ²⁻	Na ₂ CO ₃	Sodium oxide	Na⁺	0 ²⁻	Na ₂ O
caesium sulphide	Cs⁺	S ²⁻	Cs ₂ S	Lithium sulphate	Li⁺	SO4 ²⁻	Li ₂ SO ₄
Ammonium sulphate	${\rm NH_4}^+$	SO ₄ ²⁻	(NH ₄) ₂ SO ₄	Calcium Iodide	Ca ²⁺	ſ	Cal ₂
Copper(I) oxide	Cu⁺	0 ²⁻	Cu ₂ O	strontium hydroxide	Sr ²⁺	OH	Sr(OH) ₂
Lithium hydrogencarbonate	Li⁺	HCO ₃	LiHCO ₃	Indium oxide	In ³⁺	0 ²⁻	In ₂ O ₃
Strontium hydroxide	Sr ²⁺	ОН	Sr(OH) ₂	Platinum(II)chloride	Pt ²⁺	Cl	PtCl ₂
Copper(II)carbonate	Cu ²⁺	CO3 ²⁻	CuCO ₃	Potassium selenide	K⁺	Se ²⁻	K ₂ Se
Zinc hydrogen carbonate	Zn ²⁺	HCO3 ⁻	Zn(HCO ₃) ₂	Rubidium sulphate	Rb⁺	SO4 ²⁻	Rb ₂ SO ₄
Aluminium nitrate	Al ³⁺	NO ₃ ⁻	AI(NO ₃) ₃	Calcium carbonate	Ca ²⁺	CO3 ²⁻	CaCO ₃
Ammonium carbonate	${\rm NH_4}^+$	CO3 ²⁻	(NH ₄) ₂ CO ₃	Gallium nitride	Ga ³⁺	N ³⁻	GaN
Silver carbonate	Ag⁺	CO3 ²⁻	Ag ₂ CO ₃	Aluminium hydroxide	Al ³⁺	OH	Al(OH)₃
Barium nitrate	Ba ²⁺	NO ₃ ⁻	Ba(NO ₃) ₂	Gold nitrate	Au⁺	NO ₃ ⁻	AuNO ₃
Aluminium fluoride	Al ³⁺	F	AIF ₃	Calcium silicate (guess)	Ca ²⁺	SiO4	Ca(SiO ₄) ₂
Potassium sulphate	ĸ⁺	SO4 ²⁻	K ₂ SO ₄	Titanium(IV) oxide	Ti ⁴⁺	0 ²⁻	TiO ₂
Francium astatide	Fr⁺	At	FrAt	Ammonium nitride	NH_4^+	N ³⁻	(NH₄)₃N
Magnesium hydroxide	Mg ²⁺	OH	Mg(OH) ₂	Bismuth(V) oxide	Bi ⁵⁺	0 ²⁻	Bi ₂ O ₅
Ammonium bromide	NH_4^+	Br	NH₄Br	Gallium telluride	Ga ³⁺	Te ²⁻	Ga ₂ Te ₃
Indium carbonate	In ³⁺	CO3 ²⁻	In ₂ (CO ₃) ₃	Copper(II)hydroxide	Cu ²⁺	OH	Cu(OH)₂
Magnesium hydroxide	Mg ²⁺	ОН	Mg(OH) ₂	Iron(III) hydrogencarbonate	Fe ³⁺	HCO ₃ ⁻	Fe(HCO ₃) ₃
Silver sulphate	Ag⁺	SO4 ²⁻	Ag ₂ SO ₄	Lithium phosphide	Li⁺	P ³⁻	Li ₃ P
Nickel(II) Chloride	Ni ²⁺	CI	NiCl ₂	Cadmium Nitride	Cd ²⁺	N ³⁻	Cd ₃ N ₂

1. If you take the O as -2, then the Roman numerals represent as assigned charge of the other element. In compound ions the individual element are not preent as ions, oxidation numbers are used to represent the formal charge, to distinguish oxidation numbers form ions the + or – must be before the number $eg SO_4^{2-}$: S = +6, each O = -2, +6 +(4 x -2) = charge on the compound ion

a NH₄ClO₃ b. Pb₃(PO₄)₂ c. Sn₃(PO₃)₄ d. PoSO₄ e. Sb(BrO)₃ f. Ru(ClO₃)₃ g. Ir₃(PO₄)₄ h. Bi₂(TeO₃)₃ i. Ga(IO₃)₃

Name	Formula	Nam	e	Formula	1	Nam	e		Formula			
Water	H ₂ O	Meth	ane	CH_4		Ethar	noic ac	id	СН	₃COOH		
Ammonia	NH ₃	Ethar	nol	C₂H₅OH		Carbonic acid		H ₂	H ₂ CO ₃			
Glucose	$C_6H_{12}O_6$				Hydrogen peroxide			H ₂	H ₂ O ₂			
(2) Formula	which can b	e worked out	just from	n the nan	ne and k	nowing	g numb	per of at	oms	from the	pref	fixes
di = 2	penta = 5	mon(o) = 1	tetr	ra = 4	tri= 3		hexa	= 6	deca	deca = 10 octa = 8		:a = 8
and the valer	ncy / oxidati	on number :	give the	e commo	n valenc	y(s) fo	r the g	roups				
group	1	2	3		4	"	5	6		7		8
Valency(s)	1	2	3	4		3		2		1		0

Compound	V 1 st	V 2 nd	FORMULA	Compound	FORMULA	V 1 st	V 2 ⁿ	Does the valency agree with the formula?	
Hydrogen fluoride	1	1	HF	Carbon dioxide	CO ₂	4	2	Yes	
Selenium bromide	2	1	SeBr ₂	Phosphorus pentachloridePCI531		NO			
Tellurium astatide	3	1	TIAt ₃	Nitrogen trichloride	NCl ₃	3	1	Yes	
Hydrogen sulphide	1	2	H₂S	Selenium dichloride	SeCl ₂	2	1	Yes	
Boron oxide	3	2	B ₂ O ₃	Carbon disulphide	CS ₂	4	2	Yes	
Boron hydride	3	1	BH ₃	Arsenic trioxide	Arsenic trioxide AsO ₃ 3 2		No		
Hydrogen telluride	1	2	TeH ₂	Oxygen difluoride	OF ₂	2	1	Yes	
Boron nitride	2	3	B_3N_2	Diphosphorus pentoxide	P ₂ O ₅	3	2	No	
Germanium hydride	4	1	GeH ₄	Sulphur dioxide	SO ₂	2	2	No	
Germanium(IV) oxide	4	2	GeO ₂	Diantimony pentasulfide	Sb ₂ S ₅	3	2	No	
Phosphorus(III) oxide	3	2	P_2O_3	Nitrogen monoxide	NO	3	2	No	
Antimony(III) oxide	3	2	Sb ₂ O ₃	Disulphur dibromide	S_2Br_2	2	1	No	
Silicon(IV) oxide	4	2	SiO ₂	Dinitrogen tetroxide	N ₂ O ₃	3	2	Yes	
Arsenic(V) sulphide	3	2	As ₂ S ₃	Sulphur trioxideSO322		No			
Nitrogen(I) oxide	1	2	N ₂ O	Tetraphosphorus decaoxide	P ₄ O ₁₀	3	2	2 No	
Selenium(VI) oxide	6	2	₃SeO₃	Xenon tetroxide	XeO ₄	0	2	No	

EXTENSION: By doing the Extension Question on page 3 you may be able to work out the formulae of the following

a) Phosphoric(V)acid H₃PO₄ Chloric(V)acid HClO₃

nitric(III) acid HNO₃

d)

j)

- b) Phosphoric(III)acid H₃PO₃
- e) selenic(IV)acid H₂SeO₃
 - k) Astatic(VII) acid HAtO₃
- c) Chloric(I)acid HClO
- f) Bromate(V)acid HBrO₃
- I) Chromic(VI)acid H₂CrO₄

Section A: Checking basics needed for balanced symbol equations, sheet 1

1. Give the formulae of the following

SCORE /15

hydroxide ion	OH	carbonate ion	CO ₃ ²⁻	nitric acid	HNO ₃
sulphate ion	SO4 ²⁻	Nitrate ion	NO ₃ ⁻	Oxide ion	0 ²⁻
Chloride ion	Cl	sulphuric acid	H ₂ SO ₄	Zinc ion	Zn ²⁺
ammonium ion	NH_4^+	Iron(III) ion	Fe ³⁺	hydrochloric acid	HCI
Sulphide ion	S ²⁻	Ammonia	NH ₃	Silver ion	Ag⁺

2. State whether the following are I (contain ions) C (covalent) M (metallic) Score /3 (all I = 1, all C= 1, all M = 1)

Mg(s)	NaCl(s)	CO ₂ (g)	Cl ₂ (g)	HCI(g)	MgCl ₂ (s)	H ₂ O(I)
М	I	С	С	С	I	С
Br ₂ (aq)	NaCl(aq)	CO ₂ (aq)	Cl ₂ (aq)	HCl(aq)	MgCl ₂ (aq)	H ₂ SO ₄ (aq)
С	I	С	Ι	*	Ι	۱*

*Acids form ions when dissolved in water

3. Use of HFBrONICIAt, for the equations below (i) Write above the equation whether the substance is I, C or M, (ii) Then CIRCLE all the formulae that you need to use HFBrONICIAt with

Μ С L Μ С L b) Sodium + sulphur \rightarrow sodium sulphide a) Calcium + $(xygen) \rightarrow$ calcium oxide С С С С Μ Т c) (hydrogen) + oxygen → d) $(\text{lodine(aq)} + \text{calcium} \rightarrow \text{calcium iodide})$ water Μ I (an (aq) acid) С T e) Magnesium + hydrochloric acid(aq) \rightarrow magnesium chloride \leftarrow hydrogen С Т I С f) Aluminium bromide(aq) + nitrogen \rightarrow aluminum nitride + (promine(aq))L L С С Т g) Strontium carbonate + sulfuric acid (aq) \rightarrow strontium sulfate + carbon dioxide + water С С С h) Chlorine (hydrogen) hydrogen chloride I L С I i) Copper(I)oxide + nitric acid(aq) \rightarrow copper(I)nitrate + water Μ С I j) Silver \leftarrow chlorine \rightarrow silver chloride

DATE:

1. Give the formulae of the following

SCORE /21

Chloride ion	Cl	Ammonia	NH ₃	nitric acid	HNO ₃
sulphate ion	SO4 ²⁻	Sulphide ion	S ²⁻	Silver ion	Ag⁺
sulphuric acid	H ₂ SO ₄	Zinc ion	Zn ²⁺	ammonium ion	NH4 ⁺
Nitrate ion	NO ₃ ⁻	ethanoate ion	CH₃COOH	hydrochloric acid	HCI
carbonate ion	CO ₃ ²⁻	ethanoic acid	CH₃COO ⁻	hydroxide ion	OH-
Iron(III) ion	Fe ³⁺	Strontium ion	S ²⁻	Nitride ion	N ³⁻
Selenide ion	Se ²⁻	lodide ion	Г	Phosphide ion	P ³⁻

I/C or	Name	<i>lf</i> C or M	if Ioni	c , work d	out ion	s <u>then</u> nu	mber of each needed
M?		formula	no	+ve ion	no	- ve ion	formula
I	Sodium oxide		2	Na⁺	1	0 ²⁻	Na ₂ O
С	oxygen	02					
М	sodium	Na					
I	Calcium hydroxide		1	Ca ²⁺	2	OH	Ca(OH)₂
С	Carbon dioxide	CO ₂					
I	Magnesium oxide		1	Mg ²⁺	1	0 ²⁻	MgO
I	Iron(III) chloride		1	Fe ³⁺	3	Cl	FeCl₃
С	Chlorine	Cl ₂					
I	Barium chloride		1	Ba ²⁺	2	Cl	BaCl ₂
I	Calcium carbonate		1	Ca ²⁺	1	CO ₃ ²⁻	CaCO ₃
I	Sodium carbonate		2	Na⁺	1	CO3 ²⁻	Na ₂ CO ₃
I	Aluminum carbonate		2	Al ³⁺	3	CO3 ²⁻	Al ₂ (CO ₃) ₃
I	silver sulphate		2	Ag⁺	1	SO ₄ ²⁻	Ag ₂ SO ₄
м	Iron	Fe					
I	Lead(IV) nitrate		1	Pb ⁴⁺	4	NO ₃ ⁻	Pb(NO ₃) ₄
I	Lead(IV) nitride		3	Pb ⁴⁺	4	N ³⁻	Pb ₃ N ₄

Section A: Checking basics needed for writing balanced symbol equations, SEE PAGE 1 of notes for worked example

М	С		I : Al ³⁺ + 3Cl ⁻	
Aluminium	+ chlorine*	\uparrow	Aluminium chloride	
AI	1.5Cl ₂		AICI ₃	

2.	I: 1 Ca ²⁺ + 1 CO ₃ ²⁻		I: 1 Ca ²⁺ + 1 O ²⁻	С	
	Calcium carbonate	\rightarrow	Calcium oxide	+ carbon dioxide	
	CaCO₃		CaO	CO2	

3.	$I: 2 Na^{+} + 1 CO_{3}^{2-}$		I: 2 Na ⁺ + 1 O ²⁻	С	
	sodium carbonate	\rightarrow	Sodium oxide	+ carbon dioxide	
	Na ₂ CO ₃		Na ₂ O	CO2	

4. M	(I (aq))		I: 1 Mg ²⁺ + 2Cl ⁻	С	
Magnesium	+ hydrochloric acid	\rightarrow	Magnesium chloride	+ hydrogen*	
Mg	2HCl		MgCl ₂	H ₂	

5. I: 1 Na ⁺ + 1 OH ⁻	(I (aq))		I: 1 Na ⁺ + 1 NO ₃ ⁻	С	
Sodium hydroxide	+ nitric acid	\rightarrow	Sodium nitrate	+ water	
NaOH	HNO₃		NaNO ₃	H₂O	

6. I: 1 Ca ²⁺ + 2 OH ⁻	(I (aq))		I: 1 Ca ²⁺ + 2 NO ₃	С	
Calcium hydroxide	+ nitric acid	\rightarrow	Calcium nitrate	+ water	
Ca(OH)₂	2HNO₃		Ca(NO ₃) ₂	H₂O	

7. I: 1 Al ³⁺ + 3 OH ⁻	(I (aq))		I: 1 Al ³⁺ + 3 NO ₃	С	
Aluminium hydroxide	+ nitric acid	\rightarrow	Aluminium nitrate	+ water	
AI(OH)₃	3HNO₃		AI(NO ₃) ₃	3H ₂ O	

8. I: 1 Pb ⁴⁺ + 4 OH ⁻	(I (aq))		I: 1 Pb ⁴⁺ + 4 NO ₃	С	
Lead(IV) hydroxide	+ nitric acid	\rightarrow	Lead(IV) nitrate	+ water	
Pb(OH) ₄	4HNO ₃		Pb(NO ₃) ₄	4H ₂ O	

9. I: $1K^{+} + 1OH^{-}$	(I (aq))		I : 2 K ⁺ + 1 SO ₄ ²⁻	С	
potassium hydroxide	+ sulphuric acid	\rightarrow	potassium sulphate	+ water	
2кон	H ₂ SO ₄		K ₂ SO ₄	2H ₂ O	

10. : 1 Ga ³⁺ + 3 Br ⁻	С		: 2 Ga ³⁺ + 30 ²⁻	С	
Gallium bromide	+ oxygen*	\rightarrow	Gallium oxide	+ bromine*	
2GaBr ₃	1.5 O ₂		Ga ₂ O ₃	3Br ₂	

* diatomic...

Reaction of Acids 1 (a) Complete the word equation CHECK YOUR ANSWERS and then (b) Write balanced symbol equation 1. Magnesium + hydrochloric acid \rightarrow Magnesium chloride + Hydrogen
$Mg + 2HCI \rightarrow MgCl_2 + H_2$
2. Calcium oxide + sulphuric acid \rightarrow Calcium sulphate + Water
$CaO + H_2SO_4 \rightarrow CaSO_4 + H_2O$
3. sodium hydroxide + nitric acid → Sodium nitrate + Water
NaOH + HNO ₃ \rightarrow NaNO ₃ + H ₂ O
4. Magnesium carbonate + hydrochloric acid \rightarrow Magnesium chloride + carbon dioxide + water
$MgCO_3 + 2HCI \rightarrow MgCI_2 + CO_2 + H_2O$
5. sodium hydrogencarbonate + sulphuric acid \rightarrow Sodium sulphate + carbon dioxide + water
$2NaHCO_3 + H_2SO_4 \rightarrow Na_2SO_4 + 2CO_2 + 2H_2O$
6. silver oxide + hydrochloric acid \rightarrow Silver chloride + water
Ag_2O + 2HCI \rightarrow 2AgCI + H_2O
7. Lithium + sulphuric acid → Lithium sulphate + hydrogen
$2Li + H_2SO_4 \rightarrow Li_2SO_4 + H_2$
8. Calcium hydroxide + nitric acid \rightarrow Calcium nitrate + water
$Ca(OH)_2$ + $2HNO_3 \rightarrow Ca(NO_3)_2$ + $2H_2O$
9. potassium carbonate + hydrochloric acid \rightarrow potassium chloride + carbon dioxide + water
K_2CO_3 + 2HCl \rightarrow 2KCl + CO_2 + H_2O
10. Barium hydrogencarbonate + nitric acid → Barium nitrate + carbon dioxide + water
$Ba(HCO_3)_2 + 2HNO_3 \rightarrow Ba(NO_3)_2 + 2CO_2 + 2H_2O$
11. sulphuric acid + barium oxide \rightarrow barium sulphate + water
$H_2SO_4 + BaO \rightarrow BaSO_4 + H_2O$
12. Gallium hydroxide + ethanoic acid → Gallium ethanoate + water
Ga(OH)₃ + 3CH₃COOH → Ga(CH₃COO)₃ + 3H₂O

Reaction of Acids 2	(a) Complete the word equation	CHECK YOUR ANSWERS and then (b) Write balanced symbol equations
---------------------	--------------------------------	---

1a. Aluminum oxide + sulfuric acid \rightarrow Aluminum sulphate + water

$$Al_2O_3 + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2O_4$$

1b. Aluminum hydroxide + sulfuric acid \rightarrow Aluminum sulphate + water

 $AI(OH)_3 + 3H_2SO_4 \rightarrow AI_2(SO_4)_3 + 3H_2O$

2a. Lead(IV) carbonate + nitric acid \rightarrow lead(IV)nitrate + carbon dioxide + water

 $Pb(CO_3)_2 + 4HNO_3 \rightarrow Pb(NO_3)_4 + 2CO_2 + 2H_2O$

2b. Lead(IV) hydrogencarbonate + nitric acid \rightarrow lead(IV)nitrate + carbon dioxide + water

 $Pb(HCO_3)_4 + 4HNO_3 \rightarrow Pb(NO_3)_4 + 2CO_2 + 2H_2O_3$

3. Hydrochloric acid + magnesium \rightarrow magnesium chloride + hydrogen

 $HCl + Mg \rightarrow MgCl_2 + H_2$

4. Ammonium hydroxide + sulphuric acid \rightarrow ammonium sulphate + water

 $2NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + 2H_2O$

5. Ammonia + nitric acid \rightarrow ammonium nitrate

 $NH_3 + HNO_3 \rightarrow NH_4NO_3$

6. copper(II) hydroxide + hydrobromic acid \rightarrow copper(II) bromide + water

 $Cu(OH)_2 + 2HBr \rightarrow CuBr_2 + 2H_2O$

7. calcium hydrogencarbonate + phosphoric acid \rightarrow calcium phosphate + carbon dioxide + water

 $3Ca(HCO_3)_2 + 2H_3PO_4 \rightarrow Ca_3(PO_4)_2 + 6CO_2 + 6H_2O_2$

8. Vandium(V)oxide + hydroiodic acid \rightarrow vanadium(V)iodide + water

 $V_2O_5 + 10HI \rightarrow 2VI_5 + 5H_2O$

9. ammonia + hydrochloric acid \rightarrow ammonium chloride

```
NH_3 + HCI \rightarrow NH_4CI
```

10. strontium + nitric acid \rightarrow strontium nitrate + hydrogen

 $Sr + 2HNO_3 \rightarrow Sr(NO_3)_2 + H_2$

Reaction of Acids 3 (a) Complete the word equation CHECK YOUR ANSWERS and then (b) Write balanced symbol equations 1. Tin(II) hydroxide + hydrochloric acid \rightarrow Tin chloride + Water $Sn(OH)_2 + 2HCI \rightarrow SnCl_2 + 2H_2O$ 2. Bismuth (V) + nitric acid \rightarrow Bismuth nitrate + Hydrogen Bi + 5HNO₃ \rightarrow Bi(NO₃)₅ + 2.5H₂ 3. Iron(III)carbonate + sulphuric acid \rightarrow iron (III) sulfate + water + carbon dioxide $Fe_2(CO_3)_3 + 3H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 3CO_2 + 3H_2O$ 4. ammonium hydrogencarbonate + ethanoic acid \rightarrow ammonium ethanoate + water + carbon dioxide $NH_4HCO_3 + CH_3COOH \rightarrow CH_3COONH_4 + H_2O + CO_2$ 5. Copper(II)oxide + nitric acid \rightarrow Copper (II) nitrate + water $CuO + 2HNO_3 \rightarrow Cu(NO_3)_2 + H_2O$ 6. silver carbonate + phosphoric acid \rightarrow silver phosphate + water + carbon dioxide $3Ag_2CO_3 + 2H_3PO_4 \rightarrow 2Ag_3PO_4 + 3CO_2 + 3H_2O$ 7. ammonia + sulfuric acid \rightarrow ammonium sulfate $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$ 8. Calcium hydroxide + sulphuric acid \rightarrow calcium sulphate + water $Ca(OH)_2 + H_2SO_4 \rightarrow CaSO_4 + 2H_2O$ 9. Caesium carbonate + hydroiodic acid \rightarrow Caesium iodate + carbon dioxide + water $Cs_2CO_3 + 2HI \rightarrow 2CsI + CO_2 + H_2O$ 10. Polonium(VI) hydrogencarbonate + ethanoic acid \rightarrow Polonium (VI) ethanoate + carbon dioxide + water $PO(HCO_3)_6$ + $6CH_3COOH \rightarrow (CH_3COO)_6PO$ + $6CO_2$ + $6H_2O$ 11. sulphuric acid + Antimony (V) \rightarrow Antimony (V) sulphate + hydrogen $5H_2SO_4 + 2Sb \rightarrow Sb_2(SO_4)_5 + 5H_2$ 12. Thallium hydroxide + Chloric acid \rightarrow Thallium Chlorate + water $TI(OH)_3 + 3HCIO_3 \rightarrow TI(CIO_3)_3 + 3H_2O$

1. Indium carbonate + nitric acid \rightarrow Indium nitrate + carbon dioxide + water
$In_2(CO_3)_3 + 6HNO_3 \rightarrow 2In(NO_3)_3 + 3CO_2 + 3H_2O_3$
2. Rubidium oxide + hydrochloric acid \rightarrow Rubidium chloride + water
$Rb_2O + 2HCI \rightarrow 2RbCI + H_2O$
3. Ammonia + phosphoric acid \rightarrow ammonium phosphate
$3NH_3 + H_3PO_4 \rightarrow (NH_4)_3PO_4$
4. titanium + sulfuric acid → titanium(IV) sulfate + hydrogen
$Ti + 2H_2SO_4 \rightarrow Ti(SO_4)_2 + 2H_2$
5. silver oxide + phosphoric acid \rightarrow silver phosphate + water
$3Ag_2O + 2H_3PO_4 \rightarrow 2Ag_3PO_4 + 3H_2O$
6. Aluminium + hydrobromic acid → Aluminium bromide + hydrogen
$2AI + 6HBr \rightarrow 2AIBr_3 + 3H_2$
7. Gallium hydrogencarbonate + nitric acid \rightarrow gallium nitrate + carbon dioxide + wate
$Ga(HCO_3)_3 + 3HNO_3 \rightarrow Ga(NO_3)_3 + 3CO_2 + 3H_2O$
8. Antimony(V)oxide + nitric acid \rightarrow antimony(v) nitrate + water
$Sb_2O_5 + 10HNO_3 \rightarrow 2Sb(NO_3)_5 + 5H_2O$
9. ammonia + phosphoric acid \rightarrow ammonium phosphate
$3NH_3 + H_3PO_4 \rightarrow (NH_4)_3PO_4$
10. Lead(IV) oxide + bromic acid \rightarrow Lead(IV) bromate + water
$PbO_2 + 4HBrO_3 \rightarrow Pb(BrO_3)_4 + 2H_2O$
11. Antimony(III) + Sulfuric acid → Antimony(III) sulphate + hydrogen
$2Sb + 3H_2SO_3 \rightarrow Sb_2(SO_3)_3 + 3H_2$
12. Polonium(VI) carbonate + selenic acid \rightarrow Polonium(VI) selenate + carbon dioxide + water
$Po(CO_3)_3 + 3H_2SeO_4 \rightarrow Po(SeO_4)_3 + 3CO_2 + 3H_2O$

Reaction of Acids 4

SECTION A

1 $Ca + 0.5O_2 \rightarrow CaO$ 2 $Na + S \rightarrow NaS$ 3 $H_2 + 0.5O_2 \rightarrow H_2O$ 4 $I_2 + Ca \rightarrow CaI_2$ 5 Mg + 2HCl \rightarrow MgCl₂ + H₂ 6 AI + 1.5Br₂ \rightarrow AlBr₃ 7 $SrCO_3 + H_2SO_4 \rightarrow SrSO_4 + CO_2 + H_2O_4$ 8 $Cl_2 + H_2 \rightarrow 2HCl$ 9 $Cu_2O + 2HNO_3 \rightarrow 2CuNO_3 + H_2O$ 10 4Ag + $O_2 \rightarrow 2Ag_2O$ 11 Sn + O₂ \rightarrow SnO₂ 12 Na + H₂O \rightarrow NaOH + 0.5H₂ 13 Ca(OH)₂ + 2HCl \rightarrow CaCl₂ + 2H₂O 14 Mg + 2H₂O \rightarrow Mg(OH)₂ + H₂ 15 $Ba(NO_3)_2 \rightarrow BaO + 2NO_2 + 0.5O_2$ **SECTION B** a Cu + $0.5O_2 \rightarrow CuO$ b $2Cu + 0.5O_2 \rightarrow Cu_2O$ c $N_2 + O_2 \rightarrow NO$ d NO + $0.5O_2 \rightarrow NO_2$ e $CH_4 + 1.5O_2 \rightarrow CO + 2H_2O$ $f P_4 + 3O_2 \rightarrow P_4O_6$ g MgCO₃ \rightarrow MgO + CO₂ h Ca(OH)₂ \rightarrow CaO + H₂O $I Ca(NO_3)_2 \rightarrow CaO + NO_2 + 1.5O_2$ $i Al_2(CO_3)_3 \rightarrow Al_2O_3 + 3CO_{23}$ k $2\text{LiNO}_3 \rightarrow \text{Li}_2\text{O} + 2\text{NO}_2 + 0.5\text{O}_2$

SECTION C

a) Na₂O + 2K \rightarrow K₂O + 2Na b) $2Li + SrO \rightarrow Li_2O + Sr$ c) $ZnO + CO \rightarrow CO_2 + Zn$ d) $CuSO_4 + Mg \rightarrow MgSO_4 + Cu$ e) AlCl₃ + 3Li \rightarrow 3LiCl + Al f) $3Cu(NO_3)_2 + 2Ga \rightarrow 2Ga(NO_3)_3 + 3Cu$ g) $Cl_2 + 2NaBr \rightarrow 2NaCl + Br_2$ h) $2TII + Br_2 \rightarrow 2TIBr + I_2$ i) $4PF_3 + 0.5N_2 \rightarrow P_4 + NF_3$ SECTION D (a) $Li_2O + H_2O \rightarrow 2LiOH$ (b) $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$ (c) $SO_3 + H_2O \rightarrow H_2SO_4$ (d) $H_2SO_4 + Na_2O \rightarrow Na_2SO_4 + H_2O$ (e) MgO + 2HCl \rightarrow MgCl₂ + H₂O (f) $SO_3 + CaO \rightarrow CaSO_4$ (g) $Al_2O_3 + 3H_2O \rightarrow 2Al(OH)_3$ (h) $CO_2 + H_2O \rightarrow H_2CO_3$ (i) $Sr(OH)_2 + 2HNO_3 \rightarrow Sr(NO_3)_2 + 2H_2O$ (j) $H_2SO_4 + Au_2O \rightarrow Au_2(SO_4)_2 + H_2O$ (m) $2KOH + CO_2 \rightarrow K_2CO_3 + H_2O$ (n) PbO + 2NO₂ + 1.5O₂ \rightarrow Pb(NO₃)₂ (o) $6HCI + Al_2O_3 \rightarrow 2AICl_3 + H_2O$ (p) $Ga(OH)_3 + 3HNO_3 \rightarrow Ga(NO_3)_3 + 3H_2O$ (r) $3SnO_2 + 4H_3PO_4 \rightarrow Sn_3(PO_4)_4 + 6H_2O_4$ (q) $3SiO_2 + 2TI_2O_3 \rightarrow TI_4(SiO_4)_3$

Section F Miscellaneous 2 Section E Miscellaneous 1 a. $2AI(OH)_3 \rightarrow AI_2O_3 + 3H_2O$ 1. $Tl_2(SO_3)_3 + 3Mg \rightarrow 2Tl + 3MgSO_3$ b. $2\text{LiNO}_3 \rightarrow \text{Li}_2\text{O} + 2\text{NO}_2 + \frac{1}{2}\text{O}_2$ 2. 3Ba + $N_2 \rightarrow Ba_3N_2$ 3. $Fe_2(SO_4)_3 \rightarrow Fe_2O_3 + 3SO_3$ c. $KNO_3 \rightarrow KNO_2 + \frac{1}{2}O_2$ d. $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ 4. $2LiNO_3 \rightarrow Li_2O + 2NO_2 + \frac{1}{2}O_2$ e. $C_5H_{11}OH + 7.5O_2 \rightarrow 5CO_2 + 6H_2O$ 5. $AI_2O_3 + 2NaOH \rightarrow 2NaAIO_2 + H_2O$ f. $Cu_3N_2 + 3O_2 \rightarrow 3CuO + NO + NO_2$ 6. $(NH_4)CO_3 + 2HNO_2 \rightarrow 2NH_4NO_2 + CO_2 + H_2O_2$ g. $2NH_3 + 2.5O_2 \rightarrow 2NO + 3H_2O$ 7. $Ga_2S_3 + 6HBr \rightarrow 2GaBr_3 + 3H_2S$ h. $3Bi_2O_5 + 10H_3PO_4 \rightarrow 2Bi_3(PO_4)_5 + 15H_2O_4$ 8. $3Ca(OH)_2 + 2H_3PO_4 \rightarrow Ca_3(PO_4)_2 + 6H_2O_3$ i. $2TI(HCO_3)_3 + 3H_2SO_3 \rightarrow TI_2(SO_3)_3 + 6H_2O + 6CO_2$ 9. $Ga(HCO_3)_3 + 3HClO_3 \rightarrow Ga(ClO_3)_3 + 3H_2O + 3CO_2$ j. PbO₂ + 2H₂SO₃ \rightarrow Pb(SO₃)₂ + 2H₂O 10. $PbO_2 + 2H_2SO_3 \rightarrow Pb(SO_3)_2 + 2H_2O$ 11. $2Bi(OH)_5 + 5(NH_4)_2SO_2 \rightarrow Bi_2(SO_4)_5 + 10NH_3 + 20H_2O$ k. $Po(OH)_2 + (NH_4)_2SO_4 \rightarrow PoSO_4 + 2NH_3 + 2H_2O_4$ I. $Zn + 4HNO_3 \rightarrow Zn(NO_3)_2 + 2NO_2 + 2H_2O$ 12. ZnO + 2AI(OH)₃ \rightarrow Zn(AlO₂)₂ + 2H₂O m. $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ n. Ga(HCO₃)₃ + 3HClO₃ \rightarrow Ga(ClO₃)₃ + 3H₂O + 3CO₂ <u>Sectio</u>n G 1. Aluminium + iodine \rightarrow aluminium iodide $2AI + 3I_2 \rightarrow 2AII_3$ 2. Potassium hydroxide + sulfuric acid \rightarrow potassium sulfate + water $2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$ 3. Lithium + oxygen \rightarrow Lithium oxide $4Li + O_2 \rightarrow 2Li_2O$ 4. Lead(II) oxide + nitric acid \rightarrow lead(II) nitrate + water $PbO + 2HNO_3 \rightarrow Pb(NO_3)_2 + H_2O$ 5. Polonium + nitrogen \rightarrow polonium(II) nitride $3Po + N_2 \rightarrow Po_3N_2$ 6. Ammonium carbonate + hydrochloric acid → ammonium chloride + carbon dioxide + water $(NH_4)_2CO_3 + 2HCI \rightarrow 2NH_4CI + H_2O + CO_2$ 7. Sodium + water \rightarrow sodium hydroxide + hydrogen $Na + H_2O \rightarrow NaOH + \frac{1}{2}O_2$ 8. Iron(II) hydrogencarbonate + phosphoric acid \rightarrow iron(II) phosphate + water + carbon dioxide 3Fe(HCO₃)₂ + 2H₃PO₄ \rightarrow $Fe_3(PO_4)_2 + 6H_2O + 6CO$ 9. Calcium + water \rightarrow calcium hydroxide + hydrogen $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$ 10. Gallium + chloric acid \rightarrow Gallium chlorate + hydrogen $2Ga + 6HClO_3 \rightarrow 2Ga(ClO_3)_3 + 3H_2$ 11. Carbon dioxide + sodium hydroxide \rightarrow sodium hydrogencarbonate $CO_2 + NaOH \rightarrow NaHCO_3$ 12. Aluminium nitrate \rightarrow aluminium oxide + nitrogen dioxide + oxygen $4AI(NO_3)_3 \rightarrow 2AI_2O_3 + 12NO_2 + 3O_2$ 13. Methanethiol + oxygen \rightarrow carbon dioxide + sulfur dioxide + water $CH_3SH + 3O_2 \rightarrow CO_2 + SO_2 + 2H_2O$ 14. Silicon oxide + sodium oxide \rightarrow sodium silicate $SiO_2 + Na_2O \rightarrow Na_2SiO_3$ 22. Dodecane + oxygen \rightarrow carbon monoxide + carbon + 15. Gallium + hydroiodic acid → gallium iodide + hydrogen water $2Ga + 6HI \rightarrow 2Gal_3 + 3H_2$ $C_{12}H_{26} + 9O_2 \rightarrow 5CO + 7C + 13H_2O$ 16. Carbon dioxide + aluminium oxide \rightarrow aluminium carbonate 23. Ammonia + oxygen \rightarrow nitric oxide + water $CO_2 + Al_2O_3 \rightarrow Al_2(CO_3)_3$ $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ 17. Sulfur trioxide + copper oxide \rightarrow copper sulfate 24. Phosphorus + chlorine \rightarrow phosphorus pentachloride $SO_3 + CuO \rightarrow CuSO_4$ $P_4 + 10Cl_2 \rightarrow 4PCl_5$ 18. Magnesium hydroxide + aluminium oxide ?? \rightarrow magnesium 25. Chlorine + oxygen \rightarrow dichlorine heptoxide aluminate + water $2Cl_2 + 7O_2 \rightarrow 2Cl_2O_7$ 19. Nitrogen dioxide + oxygen + barium oxide \rightarrow barium nitrate $4NO_2 + O_2 + 2BaO \rightarrow 2Ba(NO_3)_2$

20. carbon dioxide + sodium oxide \rightarrow sodium carbonate

21. Phosphorus trioxide + calcium oxide + oxygen \rightarrow calcium phosphate

 $CO_2 + Na_2O \rightarrow Na_2CO_3$

 $P_4O_6 + 6CaO + 2O_2 \rightarrow 2Ca_3(PO_4)_2$

49