
A: NOTES Page
HOW TO GET THE MOST OUT OF THIS BOOKLET, and the steps for writing equations 1
Definitions 2,3
GCSE Atomic structure / Periodic table 4
How to work out the type of bonding a substance has 5
How to work out the charges of ions from the Periodic Table 6
Ionic and Covalent bonding 7,8
Naming ions / compounds : LEARN, LEARN and LEARN AGAIN 9
How to Balance equations - and hints how to get faster 10
Three methods for writing ionic formulae 11,12
Remembering the acids reactions and how to work out the names of the salt formed 13
lons from formulae of acids 14
B: PRACTICE QUESTIONS(a) Balancing equations - can you balance quickly?15,16
(b) Use of terms molecules, compounds and elements and naming 17
(c) Can you work out the charges of ions, do you know the ions in a formula? 18
(d) Do you know the ions and can you write ionic formulae? 19,20
(e) Covalent formulae 21
(g) Do you know the ions and when to use X_{2} when writing symbol equations? 22
(f) Formula test and practicing writing formulae 23
(g) Writing balanced symbol equations (1) 24
(2) Knowing the reactions and acids and writing balanced symbol equations
(a) Word equations for the reactions of acid and their balanced symbol equations 25-28
(b) More practice writing symbol equations 29-30C: ANSWER TO PRACTICE QUESTIONS (there may be the odd mistake....)31 - end

To make a success of A Level all the basic GCSE language skills (types of bonding a substance has, knowing whether a substance is a molecule, element, compound, writing balance symbol, ionic and ion-electron equations) have to be perfect. Some GCSE courses concentrate more of these skills than others so it is important to check for any gaps before you start the A Level. Can you write balance symbol equations quickly without mistake under test conditions?? Only when you can do the Questions on pg 29 without mistake, under test conditions, have you mastered GCSE level, this can take many months - start now to be ready for September

An example: \quad Aluminium $(\mathrm{s})+$ nitric acid $(\mathrm{aq}) \rightarrow$ Aluminium nitrate $(\mathrm{aq})+$ hydrogen (g)
The steps involved are
(1) The most important thing to remember is when you are first starting writing equations is that you have to work out the formula of each substance separately, ie do not try to work out the formulae of any of the products by looking back at the formulae of the reactants, in the example above you need to work out the four individual formula, and only then link them together by putting balancing numbers in front of the formulae, and ONLY in front - DO NOT CHANGE THE FORMULAE.
(2) Are the substances ionic (or contains ions), covalent or metallic, and when starting out it helps to write I, C or M above the name.
a) IF metallic - just write the substance symbol from the Periodic Table DO NOT WRITE A CHARGE, metals elements are neutral
b) If covalent (at GCSE this was if Non-Metal + Non-Metal, can be the same or different Non-Metals eg $\mathbf{O}_{\mathbf{2}}, \mathbf{N H}_{\mathbf{3}}$)

- for common covalent substances and acids (if (aq) actually contain ions) - you usually just have to remember their formula (see tables on page 9 of notes - and also page 2 for knowing which elements go around in pairs)
- others you have to work out form their name (see page 22 in the questions section)
c) If ionic, (at GCSE this was if Metal + Non-Metal eg $\mathrm{NaCl}, \mathrm{Na}_{2} \mathrm{O}$)
- if it is a binary ionic compound (ie just containing a two types of 'elements' such as aluminium oxide) then you can work out the charges on the aluminium ion and oxide ion directly from the period table (see page 6 and then write its formula (page $11 \& 12$ of notes and pages 18-20 for practice questions)
- if it contains a compound ion eg aluminium nitrate, then you have to remember the compound ion formula (pg 9) , including charge, then write its formula (method page 11\&12, practice questions pages 18-20) ['hate the -ates', you have to learn them; be 'idle for the -ides' you use the Periodic Table (exception, learn the hydroxide ion: OH^{-}), though once you have learnt the -ates, there is less work to do!!]
- For both i) and ii) in the early stages of getting good at symbol equations, for ionic formulae, write the ions and the number of each needed to ensure the total +ve charge = total -ve charge above the word of the ionic compound, to help you get the correct formula of the compound - the first practice page on full equations is set out so that you can do this.
(3) Only balance after 1 and $\mathbf{2}$ (notes page 10 - make sure you read the hints including the short cuts so you can get faster), just balancing practice questions pages 15 \&16) REMEMBER DO NOT CHANGE THE FORMULAE - you can ONLY put big numbers in front

Worked example

Step 2 a AI
Step $2 \mathrm{~b} \quad \mathrm{HNO}_{3} \quad \mathrm{H}_{2}$ (NOTE, H_{2} not H see page2)
Step $2 \mathrm{c} \quad \mathrm{Al}^{3+}+3 \mathrm{NO}_{3}^{-}$
Aluminium $(\mathrm{s})+$ nitric acid $(\mathrm{aq}) \rightarrow$ Aluminium nitrate $(\mathrm{aq})+$ hydrogen (g)
Step $2 \mathrm{a} / \mathrm{b} \mathrm{Al} \quad+\quad \mathrm{HNO}_{3} \quad \rightarrow \quad \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \quad \mathrm{H}_{2}$ Step 2 c

Step 3, using handy hints one and three, write 3 in front of HNO_{3} as you must have $3 \times$ ' $\left(\mathrm{NO}_{3}\right)^{\prime}$ Using handy hint two, leave diatomics to last and use halves if you can, $3 \mathrm{H}^{\prime}$ s on left, therefore $1 \frac{1}{2} \mathrm{H}_{2}$

$$
\mathrm{Al} \quad+\quad 3 \mathrm{HNO}_{3} \quad \rightarrow \quad \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}
$$

You could have also written $2 \mathrm{Al}+6 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{H}_{2}$ but this involves more work and time. The worked example is much easier than most equations asked in the final exam after two years, but by then you will have had two years doing harder examples than asked at GCSE, the important thing is that you know your GCSE level balanced symbol equations very well before the start of the A Level. The other GCSE equation skills (ionic and ion -electron) are relatively easy, once you have mastered balanced symbol equations. The sensible students try to recall the formula that are needed to be learnt for the course most days over the summer, they also do a bit of practice on equations/ equations skills most days.
remember DO NOT WRITE THE ANSWERS IN THIS BOOKLET, SO YOU ARE ABLE TO REDO THE QUESTIONS AGAIN, put a * by the ones you get wrong the first time and redo after a week or so.

Substance A general term, could be an atom, element, compound, mixture, etc The term 'species' is also used by chemists
Atoms The tiny particles that all substances are made from. It is the smallest stable particle of an element that can exist

Elements Substances that are made up of just one type of atom. eg $\mathrm{Ne}, \mathrm{Cl}_{2}, \mathrm{Fe}$.
Every atom of the same element has the same number of protons

Compounds two or more different types of atoms chemically bonded together in a fixed ratio. eg $\mathrm{NaCl}, \mathrm{CO}_{2}$,

Chemical bond could be ionic or covalent. ionic compounds- made up of metal ions and non metal ions bonded together Covalent bonded compounds made up (usually) of non-metal atoms sharing pairs of electrons

Molecules Made up of 2 or more atoms covalently bonded eg $\mathrm{N}_{2}, \mathrm{Cl}_{2}, \mathrm{CO}_{2}$
Molecules often have no overall charge, though molecular compound ions are common eg SO4 4^{2}-]
Most metal containing compounds have ionic bonding and therefore are not molecules

Mixtures Two or more substances that are not chemically bonded together. Eg Air is a mixture of gases, salt solution is a mixture of salt/water.

Ions Atoms (can be compounds) that have a charge as they have gained or lost electrons eg $\mathrm{Na}^{+}, \mathrm{Cl}^{-}, \mathrm{S}^{2-}$

Compound Compounds that have a charge eg MnO_{4}^{*}, can be molecular compound ions eg $\mathrm{SO}_{4}{ }^{2-}$,
lons
HFBrONICIAt is used to remember which elements are diatomic (ie X_{2}) when present just as the elements by themselves
REMEMBER HF BrONICIAt does NOT apply to the ions of the element or compounds containing these elements, eg $\mathrm{H}^{+}, \mathrm{NO}_{3}{ }^{-}$

CHEMICAL PROPERTIES How a substance reacts with another chemical

Metals Definition	Element that usually reacts by losing electron(s) to form positive ions ionic compounds
Metals react to form	
Non-metals Definition	Element that usually react by gaining electron(s) to form negative ions or share electrons
Non-metals react forming	lonic compounds or covalent substances (can be elements or compounds)
Metalloid	Element that shows characteristics of metal and non-metals

PHYSICAL PROPERTIES Property a substance has that doesnt involve another chemical
Metals shiny (lustrous) Good conductor of heat / electricity, malleable and ductile, sonorous, usually high melting points and high densities and hard (exceptions : alkali metals - soft, needs to be freshly cut to see it shine .

Non-metals typically Do not conduct electricity / poor conductor of heat (except graphite), brittle, not ductile, dull (exceptions eg graphite, lodine), not sonorous

Exam Technique. only state property that relates to that substance eg Gp1 untypical metals - don't say high melting point. Metalloids can have different chemical / physical properties that are between metal and non-metals eg usually amphoteric oxides

Allotropes	Different structural forms of the same element eg oxygen $\left(\mathrm{O}_{2}\right)$ and ozone $\left(\mathrm{O}_{3}\right)$ molecules are allotropes of oxygen		
Ionic compound (Not molecules)	Contains ions [lonic bond is the electrostatic attraction of oppositely charge ions] Formed when elements react by transferring electrons from one atom to another Consist of a metal and a non-metal in a compound eg NaCl		
Covalent substance			Contain atoms covalently bonded together (covalent bond = shared pair of electrons)
:---			
(molecules)		Usually formed between two or more non-metals	
:---			
Can be an element (eg $\left.\mathrm{H}_{2}\right)$ or a compound $\left(\mathrm{CO}_{2}\right)$			

Acid $\mathrm{H}^{+}(\mathrm{aq})$	PROTON DONOR [forms H^{+}ions when dissolved in water, $\mathrm{H}^{+}(\mathrm{aq})$ ions make solutions acidic, $\mathrm{pH}<7$]. This is actually $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ - the hydronium ion (aka hydroxonium ion)
Base	PROTON ACCEPTOR [neutralises an acid to form a salt]
Alkali	Soluble base forms/releases $\mathbf{O H}$ ions when dissolved in water [OH -(aq)ions make solutions alkaline $\mathrm{pH}>7$] (all alkalis are bases, only soluble bases are alkalis)
Salt	Substance that can be formed when a metal ion or an ammonium ion replaces a hydrogen ion in an acid [a salt can be formed by another method, its a salt as long as it can be formed by replacing a hydrogen ion of an acid]
Amphoteric	Will react with both an (strong) acid AND with a (strong) alkali

Solvent	liquid that does the dissolving	water, ethanol, tetrachloromethane
Solute	substance that is dissolved by the solvent	sodium chloride, sugar, gases,
Solution	mixture of solute dissolved in the solvent	brine
Solubility	amount that a substance will dissolve	
Precipitate	a solid produced from the reaction of two solutions	

State symbols $(\mathrm{s})=$ solid $;(\mathrm{I})=$ liquid $(\mathrm{g})=$ gas $(\mathrm{aq})=$ dissolved in water [does not mean soluble or aqueous]

ATOMIC STUCTURE AND THE PERIODIC TABLE

The -ve electrons are held in place by the +ve protons
in the nucleus [opposite charges attract]
in the nucleus [opposite charges attract]
shells have different amounts of energy. Therefore electrons can be stated to be in energy levels rather than shells. The further away the electron is form the nucleus, the higher its energy. Therefore outer energy levels are of higher energy than inner energy levels. At GCSE either the terms shells or energy levels can be used.

Symbols for the elements The symbols can be a capital letter or a capital and a lower case letter Eg K, Na. Every new capital letter represents a new element, $\mathrm{CO}=2$ elements as 2 capitals. On the IGCSE exam Periodic Table the elements are shown with atomic numbers (bottom left) and with relative atomic mass numbers above the symbol

$$
\begin{aligned}
& \begin{array}{l}
35.5 \\
\text { Cl }
\end{array} \begin{array}{l}
\text { 35.5 is the relative atomic mass (see last topic in Chemistry Unit } 2 \text {) } \\
17
\end{array} \quad \begin{array}{l}
\text { Every atom with an atomic number of } 17 \text { is a chlorine atom. }
\end{array} \\
& 17
\end{aligned}
$$

Arrangement of electrons - SHELLS (or energy levels) : ONLY NEEDED for first 20 elements (up to Ca)

The electrons in an atom occupy the lowest available energy level. Therefore the innermost shell (the $1^{\text {st }}$ shell - maximum of two electrons) is fully filled before an electron will occupy the second shell (maximum of 8 electrons). The arrangement of electrons determines an element's position in the periodic table and how the element reacts.

1 $^{\text {st }}$ shell $=$ up to 2 electrons	As Li has 3 electrons, its electron arrangement is 2,1
$2^{\text {nd }}$ shell $=$ up to 8 electrons	As Na has 11 electrons, its electron arrangement is $2,8,1$
$3^{\text {drd }}$ shell (treat as only 8 up to Ca)	As K has 19 electrons, its electron arrangement is $2,8,8,1$

$\mathrm{Li}, \mathrm{Na}, \& \mathrm{~K}$ are all in group 1 as they all have 1 electron in their outer shell

Elements in the same group in the periodic table have the same number of electrons in the outer shell.
hence The group number of an element = the number of electrons in the outer shell
elements in the same group have similar chemical reactivity, as electrons are transferred/shared in chemical reactions
PERIODIC TABLE: arranged in order of increasing atomic number shows known elements

The Periodic Table is also divided into metals and non metals (step over Aluminium). Elements that have some properties of both metals and non-metals can be called METALLOIDS. These are situated near the dividing line eg Si, Ge .

How to work out what type of bonding a substance has

How to work out what type of STRUCTURE a substance has

AKA MACROMOLECULES
The only common examples are diamond, graphite, $\mathrm{SiO}_{2}, \mathrm{BN}$

If LOW melting point (> about $1000^{\circ} \mathrm{C}^{2}$)

${ }^{1}$ Giant structures can therefore have metallic, ionic or covalent bonding. The type of bonding the giant structure has can be worked out by its electrical conduction properties.
Metallic: conducts when liquid \& solid (without decomposition) due to delocalised outer shell electrons that can move through the structure. Ionic: do not conduct when solid but conducts with decomposition when liquid (molten) or in solution due to mobile ions that are attracted to the electrodes

Covalent: (giant and simple molecular) do not conduct electricity (except graphite) as outer electrons involved in bonding and are not free to move through the structure and simple molecules have no overall electric charge.
The giant structures only apply when the substances are liquids or solids (not when gaseous). A Giant covalent structure is destroyed when it boils eg diamonds just become C atoms when it boils. If the gas formed was condensed, you would just get soot. A Simple molecular structure - remain as molecules (just separated) when it boils. When condensed the same simple molecular structure would reform (eg $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$)
${ }^{2}$ the mpt used to distinguish between simple molecular and giant covalent is approximate and only applies to substances with covalent bonding. Giant metallic substances can have quite low mpt eg sodium, $98^{\circ} \mathrm{C}$) lonic compounds vary but normally above $500^{\circ} \mathrm{C}$. ALL Giant covalent structures are insoluble

FORMATION OF IONS: An ion was an atom that now has a charge as it gained or lost electron(s) (no longer an atom...).

Positive ions are called CATIONS eg K ${ }^{+}$, \quad Negative ions are called ANIONS eg Cl

The number of charges an ion has is always written before the symbol for a charge $\mathrm{eg} \mathrm{Mg}^{2+}$ is correct, Mg^{+2} is wrong. Atom's gain or lose electrons to form empty/full outer shells. A full/empty outer shell electron arrangement is can be more stable* Noble gases (Gp 0) have full outer shells and are very unreactive. They do not want to gain or lose e- The noble gases are the only elements that exist as atoms.

Metals lose electrons to form +ve ions (size of charge $=$ group number $=$ no. of e - they need to lose to get to 0 outer e). [NOTE if (ROMAN NUMERAL) then Roman Numeral $=$ size of +ve charge)
The metal ions are +ve because they now have less protons than e-s. The no. of neutrons and protons has not changed
Non-metals usually gain electrons to form -ve ions (size of charge = no of e-they need to get to 8 outer electrons)
The non-metal ions are -ve because they now have more es than protons. The no. of n and p has not changed. [Hydrogen can form + ve or -ve ions. H^{+}is called a hydrogen ion (it is also called a proton as that's all it consists of) H^{-}is called a hydride ion] Non-metals in Gp 4 tend not to form ions,)

Examples: METAL
$\begin{array}{llll}\mathrm{Li} & \text { gp } 1 & \text { loses } 1 \text { electron } & \text { to form a } \mathrm{Li}^{+} \text {ion } \\ \mathrm{Mg} & \mathrm{gp} 2 & \text { loses } 2 \text { electrons } & \text { to form } \mathrm{Mg}^{2+} \text { ion } \\ \mathrm{Al} & \text { gp } 3 & \text { loses } 3 \text { electrons } & \text { to form a Al3 }{ }^{3+} \text { ion }\end{array}$
(0 e - in outer shell)
Naming metal ions The name is the same as the metal element
of ions: Sodium metal forms sodium ions
Magnesium metal forms magnesium ions

NON-METALS

Cl gp 7 gains 1 electron
0 gp 6 gains 2 electrons
$\mathrm{N} \quad$ gp 5 gains 3 electrons
(8 e - in outer shell)
non-metal ions the ending of the word is change to -ide eg oxygen atoms form oxide ions chlorine atoms form chloride ions

Non-Metal ions

to form a Cl ion to form a O^{2} - ion
to form a N^{3} - ion

The formation of ions can also be shown by diagrams and by a change in electronic arrangement.

chlorine atom (17p, 17e) 2,8,7

CHEMICAL

Chemical bonds form when atoms react by TRANFERRING or SHARING
(Valence) outer shell electrons (ie highest occupied energy levels of atoms)
BONDING
all chemical bonds involve the electrostatic attraction of opposite charges
Types of bonds: ionic, covalent, metallic

Atoms, Electron configuration \& Bonding Only atoms of Group O are stable substances by themselves. A full outer shell of electrons is therefore said to be a stable electron configuration. All other atoms in the periodic table transfer/gain/share electrons resulting in the formation of bonds to become more stable. In the process of forming bonds most atoms achieve a full outer shell electron configuration. It is not necessarily the full outer shell configuration that leads to stability, rather it is the formation of bonds. For most atoms, a full outer shell is eight electrons, For H and He , (period 1) a full outer shell $=2$ electrons.

METALS lose electrons [to form positive ions (size of charge = group number)] to a non metal to form ions which bond together NON-METALS EITHER gain electrons [to form -ve ions (size of charge = gp. no. - 8)] from form ions which bond together OR share electrons with other non metals to form covalent substances.

IONIC BONDING - Defn: electrostatic attraction between oppositely charged ions

[STRONG] The ionic bond extends in all directions throughout an ionic lattice (see structure topic)

- lonic bonding occurs AFTER ions have been formed
- extends throughout the structure, it is not just 2 ions bonded together
- eg between metal and nonmetal ions eg $\mathrm{NaCl}, \mathrm{MgO}, \mathrm{K}_{2} \mathrm{~S}$
- eg between ions/ compound ions eg $\mathrm{CaCO}_{3}, \mathrm{MgSO}_{4}, \mathrm{NH}_{4} \mathrm{NO}_{3}$
- lons are formed when (usually) metal atoms transfer outer shell electron(s) to a non-metal so that a negative and positive ions have formed.

Formation of ions lonic bonding occurs AFTER a metal atom has transferred its OUTER SHELL electron(s) to a non-metals OUTER SHELL so that ions are formed which attract each other and therefore form the ionic bond.

Eg (1) Formation of ions in magnesium oxide Magnesium reacts with oxygen by transferring its 2 outer shell electrons to oxygen's outer shell. Mg atoms become Mg^{2+} ions (empty outer shell), O atoms become oxide, O^{2-}, ions with eight outer electrons (a full outer shell). Both Mg^{2+} and O^{2} - ions formed have the same electronic configuration as Neon $(2,8)$. They are not the same as Ne because they still have their original number of protons. Usually only show the valence electrons, as the inner electrons are not involved in bonding

or

$$
\text { Mg: }[2,8,2]
$$

outer main shells only must use
dots and crosses
to show where the electrons come from
magnesium atom

O: [2,6]
oxygen atom

$\mathrm{Mg}^{2+}[2,8,]^{2+} \quad \mathrm{O}^{2-}[2,8,]^{2-}$ magnesium oxide (ionic compound)
note: Mg forms a $\mathbf{2}^{+}$ions, because it loses $\mathbf{2}$ electrons, oxygen atoms forms a $\mathbf{2 - o x i d e}$ ion as it gains $\mathbf{2}$ electrons. Electrons are negative. The charges on the ions (Mg^{2+} and O^{2-}) are not written in the formula of Magnesium oxide, MgO . It is assumed that a chemist would know that it is likely to be an ionic compound (as it contains a metal and a non metal). It is also assumed that a chemist could work out the size of the charges on the ions either by the diagram above, or from their knowledge that group 2 elements from $2+$ ions, and group 6 elements form 2- ions.

Eg (2) Calcium Chloride Calcium is in group 2, therefore will lose its 2 outer electrons. Chlorine is in group 7 and will gain 1 electron. In order for both atoms to achieve a full/empty outer shell calcium transfers one outer electron to one chlorine and its other outer electron to a another chlorine atom so two chloride ions (Cl)are formed. CaCl_{2}

2,8,7
2,8,8,2
2,8,7 outer shells only

[2,8,8]
$[2,8,8]^{+}$
[2,8,8]

COVALENT BONDING: DEFN: A shared pair of electrons between atoms

[STRONG] NOTE: the electrostatic attraction is between the shared negative electrons and both positive nuclei

Covalent bonding: Usually occurs between non-metals

Single covalent bond: One shared pair of e- (2e overall) with one e-coming from each atom, represented by a line like this $\mathrm{H}-\mathrm{F}$ Both electrons in a shared electron pair can originate from one of the atom (dative covalent)

Double covalent bond: Two shared pairs (4e shared overall), represented by 2 lines eg $0=0$ The two bonds are not identical
Triple covalent bond: Three shared pairs (6 e shared overall), represented by 3 lines eg $\mathrm{N}=\mathrm{N}$
LONE PAIRS \quad Non-bonding outer shell electrons -should usually be shown in pairs in the 'after' bonding diagram
Displayed formula: This is the representation of the molecule by showing the covalent bonds as lines
Examples Eg HF, a Hydrogen atom has 1 (outer) electron, and fluorine has 7 outer electrons, the atoms share one each. The hydrogen now has a share in 2 electrons, and fluorine has a share in eight electrons and a covalent bond has been formed.

only outer shells shown \bullet and \times must be used to show where the electrons have come from

Electron pairs in the outer shell that are not used in the bonding are called lone pairs of electrons. each O atom in O_{2} has 2 lone pairs. Each Cl atom in Cl_{2} has three lone pairs of electrons.

$\mathrm{H}_{2} \mathrm{O}$, water

$\mathrm{O}+\mathrm{H}, \mathrm{O}$ group 6, needs 2 electrons, Therefore bonds with two hydrogens

$$
\mathrm{NH}_{3}, \text { ammonia }
$$

$\mathrm{N}+\mathrm{H}, \mathrm{N}$ group 5, needs 3 electrons, Therefore bonds with three hydrogens
CH_{4}, methane
$\mathrm{C}+\mathrm{H} \quad \mathrm{C}$ group 4, needs 4e, Therefore bonds with four hydrogens

Displayed formula : this is the representation of the molecule by showing the covalent bonds as lines
CO_{2}, carbon dioxide $\mathrm{O}=\mathrm{C}=\mathrm{O}$

OH - hydroxide ion

Carbon Monoxide $C \rightleftharpoons 0$

Note (1): For the usual covalent bond the electrons must be shown as alternate (vertical) • and x
Note (2): When doing a $\bullet x$ diagram for a molecular ion, an electron is added for each negative charge, whilst an electron is removed for each positive charge.

MAKE SURE YOU DRAW IT LARGE ENOUGH TO FIT ALL THE SHARED ELECTRONS WITH IN THE OVERLAP AREA

Name of FORMULA WITH JUST ONE TYPE OF ATOM (AND NO CHARGE) eg K

- As stated on the periodic table (PT) $\mathrm{K}=$ potassium, $\mathrm{Cl}_{2}=$ chlorine $\mathrm{P}_{4}=$ phosphorus

Name of FORMULA of an ION eg K+ and Cl^{-}

- If it is a metal ion name is as stated on the PT with the word ion on the end eg $\mathrm{Na}^{+}=$sodium ion, $\mathrm{Mg}^{2+}=$ magnesium ion
- If it is a non metal ion CHANGE THE ENDING TO -IDE and add the word ion $\mathrm{eg} \mathrm{Cl}^{-}=$chloride ion, $\mathrm{S}^{2-}=$ sulphide ion

Name of a compound with ONE type of METAL AND ONE type of NON METAL (and no overall charge) eg LiCl

- Give the name of the metal first as printed on the periodic table eg LiCl = lithium chloride
- Give the name of the non metal second BUT CHANGE ITS ENDING to -IDE $\mathrm{MgF}_{2}=$ magnesium fluoride

Name of a compound with two types of NON METALS (and no overall charge) eg CO

- Give the name of the first non metal as given on the periodic table
- Give the name of the non metal second BUT CHANGE ITS ENDING to -IDE eg CO = carbon monoxide
- If there is more than one of the second type, use mono for 1 , di for 2 , tri for 3 and tetra for $4 \quad \mathrm{NO}_{2}=$ nitrogen dioxide
- Some Exceptions - common molecules such as $\mathrm{H}_{2} \mathrm{O}$ (water), NH_{3} (ammonia) , acids

Naming substances (2) FORMULAE THAT NEED TO BE REMEMBERED

COMMON MOLECULES						
$\mathrm{H}_{2} \mathrm{O}$	water	CH_{4}	Methane	$\mathrm{H}_{2} \mathrm{O}_{2}$	hydrogen peroxide	
CO_{2}	carbon dioxide	CO	carbon monoxide	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	ethanol	
SO_{2}	sulphur dioxide	NO	nitrogen monoxide	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	Glucose	
SO_{3}	Sulphur trioxide	NO_{2}	Nitrogen dioxide	HCOOH^{2}	Methanoic acid	
NH_{3}	ammonia	$\mathrm{C}_{2} \mathrm{H}_{4}$	Ethene	$\mathrm{CH}_{3} \mathrm{COOH}$	Ethanoic acid	
(sometimes the number of the second atom is given from mono $=1$, di $=2$, tri $=3$).						

IN BOLD - THE FORMULAE/NAME YOU MUST WRITE OUT EVERY DAY OVER THE SUMMER UNTIL YOU CAN REMEMBER THEM ALL < THEN >

GRADUALLY INCREASE THE LENGTH OF TIME BETWEEN WRITING THEM OUT SO YOU NEVER FORGET THEM

	ACIDS		COMPOUND IONS		
H^{+}ion	Hydrogen ion or Proton	OH	hydroxide ion	$\mathrm{NH}_{4}{ }^{+}$	ammonium ion
$\mathrm{H}_{2} \mathrm{CO}_{3}$	carbonic acid*	$\mathrm{HCO}_{3}{ }^{-}$	hydrogencarbonate ion		
$\mathrm{CH}_{3} \mathrm{COOH}$	ethanoic acid	$\mathrm{CH}_{3} \mathrm{COO}$	Ethanoate ion		
HNO_{3}	nitric acid [nitric(V) acid]	$\mathrm{NO}_{3}{ }^{-}$	Nitrate ion [Nitrate(V) ion		
HNO_{2}	nitric(III) acid (Nitrous acid)	$\mathrm{NO}_{2}{ }^{\text {a }}$	Nitrate(III) ion (nititie ion)	MnO_{4}^{-}	Manganate(VII)ion
$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulphuric acid [sulphuric(VI) acid]	$\mathrm{SO}_{4}{ }^{2-}$	Sulphate ion [sulphate(VI) ion]		
$\mathrm{H}_{2} \mathrm{SO}_{3}$	sulphuric(IV) acid (Sulphurous acid)	$\mathrm{SO}_{3}{ }^{\text {2- }}$	sulphate(IV) ion (sulphite ion)		
HCl	hydrochloric acid	$\mathrm{CO}_{3}{ }^{2-}$	Carbonate ion		
HClO_{3}	Chloric acid [chloric(V) acid]	$\mathrm{ClO}_{3}{ }^{-}$	Chlorate(V) ion		
HClO	Chloric(l) acid	ClO	Chlorate(l) ion		
$\mathrm{H}_{3} \mathrm{PO}_{4}$	phosphoric acid (phosphoric(V) acid	$\mathrm{PO}_{4}{ }^{3 \cdot}$	Phosphate ion (Phosphate(V) ion]		
$\mathrm{H}_{3} \mathrm{PO}_{3}$	phosphoric(III) acid (phosphorous acid)	$\mathrm{PO}_{3}{ }^{3}$	phosphate(III) ion phosphite ion		
forms when CO_{2} gas dissolves in water $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}$), equilibrium lies to the left ; carbonic acid will ionise weakly in water $\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$ ${ }^{ *} \mathrm{H}_{2} \mathrm{SO}_{3}$ (aq) may not exist, in solution the following occurs $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}^{+}+\mathrm{HSO}_{3}$ forming the hydrogensulphate(IV) ion [equilibrium lies to the left]					

note compound ions with oxygen end with -ate ion OR -ate(oxidation number) ion

BALANCING EQUATIONS

Chemists often write chemical equations using symbols instead of words. For example, the reaction of magnesium with oxygen to form magnesium oxide can be written as: \quad Magnesium + oxygen \rightarrow magnesium oxide or $\mathrm{Mg}+\mathrm{O}_{2} \rightarrow \mathrm{MgO}$ however......this symbol equation is not complete. The equation needs to be balanced.

$\mathrm{Mg}+\mathrm{O}_{2}$	\rightarrow	MgO	$2 \mathrm{Mg}+\mathrm{O}_{2}$	\rightarrow
Left hand side		Right hand side		
1 Mg		1 Mg	Left hand side	Right hand side
20	10	2 Mg		2 Mg
	not balanced		20	balanced

- In a balanced equation there has to be the same number of each particular atom on both sides of the arrow.
- To balance an equation, numbers CAN ONLY be put in front of the formulae.

Remember

- A chemical formula represents two or more elements chemically combined.
- Symbols for elements are either a single capital letter (eg O), or a capital letter and a small case letter (Na). So NO, as it is two capital letters, must represent the elements N and O , not a mysterious new element!

NOTE:

Subscript numbers cannot be changed. $\mathrm{eg} \mathrm{O}_{2}$ cannot be changed into O_{3}
Subscript numbers only apply to the element immediately before the subscript unless the subscript is after a bracket.
eg $\mathrm{In} \mathrm{ZnO}_{2}$ the subscript 2 means there are two O , It does not mean there are 20 and 2 Zn .
In AgNO_{3} there are $30,1 \mathrm{~N}$ and 1 Ag
In $\mathrm{Ag}\left(\mathrm{NO}_{3}\right)_{2}$ there are $6 \mathrm{O}, 2 \mathrm{~N}$ and 1 Ag
Putting the balancing number in front of a formula, multiplies all the elements in the formula by that number.
eg 2 CuO means there are 2 Cu and $2 \mathrm{O}, \quad 3 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=180$ (see handy hints)

Handy Hints to speed up your balancing

1) Look at the equation and first put in the minimum numbers required by the formulae

eg $\mathrm{Zn}+\mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$: The left hand side of this equation requires at least 2 HCl to provide the two Cl required by the formula ZnCl_{2}. In this example, this has led straight away to a balanced equation.
2) If the equation contains a diatomic element by itself eg $\mathrm{O}_{2} \mathrm{Br}_{2}$ leave the balancing of the $\mathrm{O}_{2} / \mathrm{Br}_{2}$ to the end and then use $1 / 2$'s if needed. $1 / 2 \mathrm{O}_{2}$ (ie 10) or a multiple of a $1 / 2 \mathrm{O}_{2}$ eg $3.5 \mathrm{O}_{2}(=70)$ are usually allowed
NOTE: This can usually only be done for Diatomic elements, as you cannot have an equation with $1 / 2$ an atom eg $1 / 2 \mathrm{H}_{2} \mathrm{O}$ is wrong, as you cannot have $1 / 2$ an O atom, $1 / 2 \mathrm{O}_{2}$ is accepted as it give 1 whole O atom.
eg $\quad \mathrm{NO}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}$ The equation would balance if you used $1 / 2 \mathrm{O}_{2} \Rightarrow \mathrm{NO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}$
The equation $\mathrm{NO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}$ can be multiplied by 2 to give whole numbers $\Rightarrow 2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
3) Count the Compound ions, rather than the atoms that make up the compound ions, if the compound ion stays together
eg $\mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$;
Rather than trying to count all the oxygens, note that on the left hand side there are 2 nitrate ions $\left(\mathrm{NO}_{3}\right)$ in $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, and one nitrate ion on the right (in HNO_{3}) therefore put a 2 in front of nitric acid $\left(\mathrm{HNO}_{3}\right)$, and then you only have to count the oxygen in $\mathrm{Mg}(\mathrm{OH})_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. ie get to $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$ then count the remaining $\mathrm{O}=>2 \mathrm{O}$ and 4 H 's on the left so $2 \mathrm{H}_{2} \mathrm{O}$ will lead to a balanced equation. $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$. To use this method you need to know what the compound ions are! (see page 4).
4) When a carbonate/hydrogencarbonate compound reacts to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$, normally the same number of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are needed in the balancing eg $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

- Using hint $1=>\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
- There are 2 C in $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$ therefore $2 \mathrm{CO}_{2}$
- Using hint 4 try $2 \mathrm{H}_{2} \mathrm{O}=>\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ equation is balanced

5) Balancing redox equations using oxidation numbers: see page 22

WRITING SYMBOL EQUATIONS from word equations

Symbol for Metal Elements

If the word equation contains a metal element (ie a metal by itself) just write the symbol of the metal from the periodic table. Do not change the symbol AT ALL. Eg magnesium Mg not Mg_{2} or Mg^{2+}

Symbol/formulae for Non - Metal Elements

If the word equation contains a non- metal element (ie a non-metal by itself) just write the symbol of the non-metal from the periodic table UNLESS the element is $\mathrm{H}, \mathrm{F}, \mathrm{Br}, \mathrm{O}, \mathrm{N}, \mathrm{I}, \mathrm{Cl}, \mathrm{At}$ in which case write it as a diatomic molecule ie $\mathrm{H}_{2}, \mathrm{~F}_{2} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{I}_{2} \mathrm{At}_{2}$ $\mathrm{Cl}_{2} \mathrm{I}_{2}$. These can be remembered by $(\mathrm{Mr}) \mathrm{HF}$. BrONIClAt has a twin brother.

Formulae of Non- Metal Compounds

A. Some formulae you can work out from the name, if you remember that mono $=1, \mathrm{di}=2$, tri $=3$, tetra $=4$
B. Some formulae need to be remembered - see table on previous page

WRITING Formulae of IONIC compounds (Metal + Non metal)

To work out the formula you first NEED TO KNOW THE CHARGE ON THE ION. First Always check whether it is an ion that needs to be remembered or whether it is an ion whose charge can be worked out from the periodic table

CHARGES OF METAL IONS (+ve)

| For GROUPS | Charge $=$ Group no. |
| :--- | :--- | | eg all Gp 2 have 2+ charge |
| :--- |
| This is equal to the no of e-that have to be lost for a full outer shell |
| For TRANSITION |
| METALS |\quad Charge usually $=2+\quad$| (Except for Ag^{+}and for some, Roman numerals show the size of the |
| :--- |
| eg Iron(III)chloride contains Fe^{3+} ions, Iron(II)chloride, Fe^{2+} ions |

Once the charge is known, the formula can be worked by either of the following methods

Method (1) [this avoids writing $\mathrm{Pb}_{2} \mathrm{O}_{4}$ formula (incorrect) instead of correct PbO_{2} for lead(IV)oxide]

- Ionic compounds have no overall charge as the +ve charges are cancelled out by an equal number of -ve charges
- The subscript numbers in the formula are the number needed of each ion to get the +ve/-ve charges to balance.
(1) Use the periodic table to work out the charges on the ions (or if a -ate or -ite compound ion, you have to remember the ion)

Eg Magnesium Chloride, contains Mg^{2+} and Cl - ions ; Magnesium nitrate, Mg^{2+} and nitrate ions, $\mathrm{NO}_{3}{ }^{-}$
(2) Work out the number of each ion so that the total charge of the compound is zero. Here TWO Cl- ions are needed to make the make $2-$ ve charges (Cl - has 1 -ve charge) to balance out the $2+$ charge of the Mg^{2+} ion- $=>$ ANSWER $=\mathrm{MgCl}_{2}$
NOTE: Brackets are used if more than one compound ion is needed eg Magnesium nitrate, made up of magnesium ions Mg^{2+} and nitrate ions, $\mathrm{NO}_{3}{ }^{-} \quad \Rightarrow$ Answer $=\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

Method (2) Quick method, but need to cancel down crossing over size of charge eg Worked example : Aluminium sulphate Step 1: write out ions $\mathrm{Al}^{3+} \mathrm{SO}_{4^{2-}} \quad$ NOTE: if ions are of the same size then STOP, The formula is done! $\mathrm{eg} \mathrm{Mg}^{2+} \mathrm{O}^{2-} \rightarrow \mathrm{MgO}$

Step 2: write out with size of ion above symbol(s), in a different colour.

Step 3: cross over diagonally

32
$\mathrm{Al} \quad \mathrm{SO}_{4}$
$\mathrm{Al}_{2} \quad \mathrm{SO}_{43}$
step 4: if needed cancel down to smallest whole number (eg $\mathrm{Pb}^{4+}+\mathrm{O}^{2-} \rightarrow \mathrm{Pb}_{2} \mathrm{O}_{4} \rightarrow \mathrm{PbO}_{2}$)
step 5: if needed cross out any 1's
step 6: put brackets around compound ions if there is more than one
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Valence electrons - the electrons in the outer shell of an atom
VALENCY : the combining power of an atom

Group	I	II	III	IV	V	VI	VII	0
Typical valency (non-metals)	-	-	3	4	3	2	1	0
maximum (non-metals)			(5)	4	5	6	7	$8!$
Typical Valency (metals)	1	2	3	$2 \& 4$	$3 \& 5$	$4 \& 6$	-	-
Transition metals	Valency can vary eg Fe 2 \& 3 ; Mn 2 to 7; Ag 1 only							

Typical valencys when metals react to forming IONIC compounds

- Gp II elements have a valency of 2 as they lose the two outer shell electrons when combining with another atom to form an empty outer energy level [noble gas electronic structure]
- Gp IV metals can have a valency of 2 or 4 as they can lose two or four electrons when combining
- Transition metals - varies

Typical valencys when Non- metals form IONIC or COVALENT compounds

- Gp VI elements has a valency of 2 as they need two electrons to complete its highest energy level / outer shell (eithef by gaining two outer shell electrons from other atom(s) when combining / or sharing two electrons from other atom(s)
- Boron valency usually 3 !!
- Can range widely

Writing formula using valency - use cross over method

Step1: write out with valency above symbol(s), in a different colour.

Step 2: cross over diagonally

step 3: put brackets around compound ions if there is more than one
step 4: if needed cancel down to smallest whole number
step 5: if needed cross out any 1's
: Example for Lead(IV)sulphate

4	2
Pb	SO_{4}

$\mathrm{Pb}_{2} \quad \mathrm{SO}_{44}$

$$
\mathrm{Pb}_{2}\left(\mathrm{SO}_{4}\right)_{4}
$$

$\mathrm{Pb}\left(\mathrm{SO}_{4}\right)_{2}$
$\mathrm{Pb}\left(\mathrm{SO}_{4}\right)_{2} \quad$ Lead(IV)sulphate

NOTE: DONT NEED TO REMEBER THE FOLLOWING for IGCSE: \qquad

Examples of wide ranging valencys of elements
(1) Nitrogen can be 1 to $5\left(\mathrm{~N}_{2} \mathrm{O}, \mathrm{NO}, \mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{5}\right)$
(2) Some Transition metals can vary widely and also can form covalent compounds, usually if they contain a high proportion of oxygen eg Chromium trioxide

	Ionic or Covalent	Valency	Name	Basic, amphoteric or acidic oxide?
CrO	Ionic	1	Chromium(II)oxide	Basic
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	Ionic	3	Chromium(III)oxide	Amphoteric
CrO_{2}		4	Chromium(IV)oxide	Amphoteric
CrO_{3}	Covalent	6	Chromium(VI)oxide	Acidic

Chromium(VI)oxide may react with water in the same way as the covalent sulphur trioxide, forming chromic acid

$$
\begin{array}{lllllll}
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} & ; & \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} & \rightarrow & \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \\
\mathrm{CrO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CrO}_{4} & ; & \mathrm{CrO}_{3}+\mathrm{H}_{2} \mathrm{CrO}_{4} & \rightarrow & \mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}
\end{array}
$$

Sulphuric acid reacts with sulphur trioxide forming 'oleum' aka disulphuric acid; Chromic acid would react with chromium(VI)oxid to form dichromic acid. The $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ion, 'dichromate(IV)ion is a common chemical in A Level chemistry.

ACID - Defns PROTON DONOR (or forms H^{+}ions when dissolved in water) BASE - Defn PROTON ACCEPTOR
ALKALI - Defn soluble base that forms OH ions when dissolved in water
SALT: Substance form when a metal ion or an ammonium ion replaces a hydrogen ion in an acid
State symbols $s=$ solid, $\mathrm{I}=$ liquid, $\mathrm{g}=\mathrm{gas}, \mathrm{aq}=$ dissolved in water

WRITING WORD EQUATIONS for the PRODUCTS of Reactions of acids : names of metal salts

Background information about salts : substance that can be formed when a metal ion or an ammonium ion replaces a hydrogen ion in an acid [a salt can be formed by another method, its a salt as long as it can be formed by replacing a hydrogen ion of an acid]
Salts are ionic compounds - contain a +ve ion (usually a metal or an ammonium ion $\mathrm{NH}_{4}{ }^{+}$) and a -ve ion
Salts can be soluble or insoluble; When ionic compounds that are soluble dissolve in water the +ve ions and -ve ions separate
$\mathrm{NaCl}(\mathrm{aq})$ means NaCl dissolved in water (not aqueous / soluble!!). The Na^{+}ions are separated from the Cl - ions. $\mathrm{NaCl}+\mathrm{aq} \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}(\mathrm{aq})$ Only when the water is evaporated do the ions join up together to form a solid Table salt is mainly sodium chloride

EXAMPLES of acids / ions from acids TO LEARN : NOTE Chemists usually write $\mathrm{H}^{+}(\mathrm{aq})$ instead of $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$, and therefore it is acceptable to do this, unless you are asked to show how the acid is reacting with water.

Name	Formula	Ions produced in water for one acid molecule $\left[\mathrm{H}^{+}(\mathrm{aq})=\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]$		Name of negative ion
Strong acids				H^{+}ions are also known as protons
Hydrochloric acid	HCl	H^{+}	Cl	Chloride ion
Chloric(V) acid	HClO_{3}	H^{+}	$\mathrm{ClO}_{3}{ }^{-}$	Chlorate(V) ion
nitric acid	HNO_{3}	H^{+}	$\mathrm{NO}_{3}{ }^{-}$	Nitrate ion
sulphuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$2 \mathrm{H}^{+}$	$\mathrm{SO}_{4}{ }^{2-}$	Sulfate ion
Note: the size of charge on the negative ion = number of H^{+}ions formed when the molecule ionises in water				
	Di - and triprotic acids can react by losing only some of their protons			
sulphuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	H^{+}	$\mathrm{HSO}_{4}{ }^{-}$	Hydrogensulfate ion
phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	H^{+}	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{2-}$	dihydrogenphosphate ion
eg $\mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{KHSO}_{4}+\mathrm{H}_{2} \mathrm{O} ; \mathrm{KHSO}_{4}$ is called potassium hydrogensulphate				
Acid salts	potassium hydrogensulphate is an example of an 'acid salt' as it can still donate a proton, and its a salt.			
The HSO_{4} - ion is an 'acid ion', not an acid salt (need +ve \& -ve ion to be a salt],				

Weak acids		only about 1 to10 of 1000 molecules split up to form ions, for carbonic acid even fewer		
phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$3 \mathrm{H}^{+*}$	$\mathrm{PO}_{4}{ }^{3-}$	Phosphate ion
Nitric(III) acid	HNO_{2}	H^{+}	NO_{2}	Nitrate(III) ion
carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	H^{+}	$\mathrm{HCO}_{3}{ }^{-}$	Hydrogencarbonate ion
ethanoic acid	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	H^{+}	$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$	Ethanoate ion
Citric acid	$\begin{gathered} \text { Not on syllabus } \\ \mathrm{HOOCC}_{(\mathrm{CH}}^{2} 2 \\ \left.\mathrm{CO}_{2} \mathrm{H}\right)_{2} \mathrm{OH} \\ \hline \end{gathered}$	3H+	$\begin{gathered} \text { Not on syllabus } \\ C_{6} \mathrm{H}_{5} \mathrm{O}^{-7} \end{gathered}$	Citrate ion
Ammonium ion	$\mathrm{NH}_{4}{ }^{+}$	Can act as an acid as it can donate a proton $\mathrm{NH}_{4}{ }^{+}+\mathrm{OH} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$		
*Strong acid	Complete ionisation in water (every molecule reacts to form H^{+}(aq) ions and a -ve ion)			
*weak acid	Partial ionisation in water (only a few molecule react to form H^{+}(aq) ions and a -ve ion)			
*	when an acid can react to release more than $1 \mathrm{H}^{+}$ion, the other ions usually only partially ionise, like a weak acid			

NOTE (1) The terms 'Strong' and 'weak' CANNOT be used to imply the overall amount of a substance dissolved in water. Strong and weak only refer to the amount of ionisation.

NOTE (2) The terms concentrated and dilute are used to imply the amount of substance dissolved in a given volume .

Dilute solution of a strong acid:
Dilute solution of a weak acid:
Concentrated solution of a strong acid:
Concentrated solution of a weak acid:
a relatively small amount of HCl dissolved in water a relatively small amount of ethanoic acid dissolved in water a relatively large amount of HCl dissolved in water) a relatively large amount of ethanoic acid dissolved in water

NOTE (3) : To compare the pH of a strong acid and a weak acid in a fair way the weak acid and strong acid must be of the same concentration (and both be monoprotic or diprotic acids). If this is the case then the pH of the stronger acid will always be lower

1 State the number of each type of atom in the following. Where the formula has a balancing number, take the balancing number into account when working out the number of each type of atom.

a	PbO_{2}	no. of $\mathrm{Pb}=$
b	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	no. of $\mathrm{Al}=$
c	$\mathrm{Bi}_{2}\left(\mathrm{SeO}_{3}\right)_{5}$	no. of $\mathrm{Bi}=$
d	$2 \mathrm{Li}_{2} \mathrm{~S}$	no. of $\mathrm{Li}=$
e	$3 \mathrm{H}_{2} \mathrm{SO}_{4}$	no. of $\mathrm{H}=$
f	$2\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ASO}_{4}$	no. of $\mathrm{H}=$

2. Balance the following equations.

A	H_{2}	+	Cl_{2}	\rightarrow	HCl				
B	Ba	+	O_{2}	\rightarrow	BaO				
C	HCl	+	Mg	\rightarrow	MgCl_{2}	+	H_{2}		
D	K	+	$\mathrm{H}_{2} \mathrm{O}$	\rightarrow	KOH	+	H_{2}		
E	$\mathrm{Mg}(\mathrm{OH})_{2}$	+	HNO_{3}	\rightarrow	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	+	$\mathrm{H}_{2} \mathrm{O}$		
F	$\mathrm{H}_{2} \mathrm{SO}_{4}$	+	Na	\rightarrow	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	+	H_{2}		
G	In	+	O_{2}	\rightarrow	$\mathrm{In}_{2} \mathrm{O}_{3}$				
H	PbCO_{3}	+	HCl	\rightarrow	PbCl_{2}	+	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$
1	$\mathrm{Ca}(\mathrm{OH})_{2}$	+	$\mathrm{H}_{2} \mathrm{SeO}_{4}$	\rightarrow	CaSeO_{4}	+	$\mathrm{H}_{2} \mathrm{O}$		
J	Na	+	HCl	\rightarrow	NaCl	+	H_{2}		
K	LiOH	+	$\mathrm{H}_{2} \mathrm{SO}_{4}$	\rightarrow	$\mathrm{Li}_{2} \mathrm{SO}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$		
L	CaCO_{3}	+	HNO_{3}	\rightarrow	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	+	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$
M	$\mathrm{NH}_{4} \mathrm{OH}$	+	$\mathrm{H}_{2} \mathrm{SeO}_{4}$	\rightarrow	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SeO}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$		
N	$\mathrm{Ba}\left(\mathrm{HCO}_{3}\right)_{2}$	+	HNO_{3}	\rightarrow	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	+	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$
0	Al	+	HNO_{3}	\rightarrow	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	+	H_{2}		
P	$\mathrm{C}_{2} \mathrm{H}_{6}$	+	O_{2}	\rightarrow	CO	+	$\mathrm{H}_{2} \mathrm{O}$		
Q	$\mathrm{In}_{2}\left(\mathrm{CO}_{3}\right)_{3}$	+	HCl	\rightarrow	InCl_{3}	+	$\mathrm{H}_{2} \mathrm{O}$	+	CO_{2}
R	$\mathrm{Ru}_{2} \mathrm{O}_{3}$	+	CO	\rightarrow	Ru	+	CO_{2}		
S	$\mathrm{Ga}_{2} \mathrm{~S}_{3}$	+	HNO_{3}	\rightarrow	$\mathrm{Ga}\left(\mathrm{NO}_{3}\right)_{3}$	+	$\mathrm{H}_{2} \mathrm{~S}$		
T	$\mathrm{H}_{3} \mathrm{PO}_{4}$	+	$\mathrm{Cu}\left(\mathrm{HCO}_{3}\right)_{2}$	\rightarrow	$\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	+	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$
U	$\mathrm{C}_{4} \mathrm{H}_{10}$	+	O_{2}	\rightarrow	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$		
V	RbOH	+	$\mathrm{H}_{2} \mathrm{TeO}_{4}$	\rightarrow	$\mathrm{Rb}_{2} \mathrm{TeO}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$		
W	$\mathrm{CH}_{3} \mathrm{OH}$	+	O_{2}	\rightarrow	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$		
X	NH_{3}	+	$\mathrm{H}_{3} \mathrm{PO}_{4}$	\rightarrow		$\mathrm{H}_{4}{ }_{3} \mathrm{P}$			
Y		$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$		\rightarrow	CuO	+	NO_{2}	+	O_{2}
Z	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$	+	O_{2}	\rightarrow	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$		
Extension (1)	$\mathrm{C}_{18} \mathrm{H}_{38}$	+	O_{2}	\rightarrow	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$		
Extension (2)	NH_{3}	+	O_{2}	\rightarrow	NO	+	$\mathrm{H}_{2} \mathrm{O}$		
Extension (3)	HNO_{3}	+	Cu	\rightarrow	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	+	NO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$

BALANCING EQUATION QUESTIONS 2

1 State the number of each type of atom in the following. Where the formula has a balancing number, take the balancing number into account when working out the number of each type of atom.

a $\mathrm{Ga}_{2} \mathrm{O}_{3}$	no. of $\mathrm{Ga}=$	no. of $\mathrm{O}=$	
b HNO_{3}	no. of $\mathrm{H}=$	no of $\mathrm{N}=$	no. of $\mathrm{O}=$
c $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	no. of $\mathrm{S}=$	no of $\mathrm{O}=$	no. of $\mathrm{Al}=$
d $2 \mathrm{MgCl}_{2}$	no. of $\mathrm{Mg}=$	no of $\mathrm{Cl}=$	
e $3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	no. of $\mathrm{O}=$	no of $\mathrm{Ca}=$	no. of $\mathrm{N}=$
2. Balance the following equations			

A	H_{2}	+	Br_{2}	\rightarrow	HBr				
B	Cu	+	O_{2}	\rightarrow		CuO			
C	Na	+	$\mathrm{H}_{2} \mathrm{O}$	\rightarrow	NaOH	+	H_{2}		
D	$\mathrm{Mg}(\mathrm{OH})_{2}$	+	HNO_{3}	\rightarrow	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	+	$\mathrm{H}_{2} \mathrm{O}$		
E	Li	+	O_{2}	\rightarrow	$\mathrm{Li}_{2} \mathrm{O}$				
F	Al	+	O_{2}	\rightarrow	$\mathrm{Al}_{2} \mathrm{O}_{3}$				
G	KOH	+	$\mathrm{H}_{2} \mathrm{SO}_{4}$	\rightarrow	$\mathrm{K}_{2} \mathrm{SO}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$		
H	CaCO_{3}	+	HCl	\rightarrow	CaCl_{2}	+	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$
\|	$\mathrm{C}_{2} \mathrm{H}_{6}$	+	O_{2}	\rightarrow	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$		
J		$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$		\rightarrow	CuO	+	NO_{2}	+	O_{2}
K	$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$	+	HNO_{3}	\rightarrow	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	+	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$
L	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	+	O_{2}	\rightarrow	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$		
M	$\mathrm{NH}_{4} \mathrm{OH}$	+	$\mathrm{H}_{2} \mathrm{SO}_{4}$	\rightarrow	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	+	$\mathrm{H}_{2} \mathrm{O}$		
N	CH_{4}	+	O_{2}	\rightarrow	CO	+	$\mathrm{H}_{2} \mathrm{O}$		
0	$\mathrm{Ru}_{2} \mathrm{O}_{3}$	+	CO	\rightarrow	Ru	+	CO_{2}		
P	$\mathrm{Ga}_{2} \mathrm{~S}_{3}$	+	HNO_{3}	\rightarrow	$\mathrm{Ga}\left(\mathrm{NO}_{3}\right)_{3}$	+	$\mathrm{H}_{2} \mathrm{~S}$		
Q	$\mathrm{H}_{3} \mathrm{PO}_{4}$	+	$\mathrm{Cu}\left(\mathrm{HCO}_{3}\right)_{2}$	\rightarrow	$\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	+	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$

Balancing Equations Extension

Please note for Q2, Q3 and Q4

- state all the formulae that answer the question (ie there could be up to $5 / 6$ answers for each)
- If a compound contains a metal then it is unlikely to be a molecule

2(a). From	MgBr_{2}	Br_{2}	CO	CaO	O_{2}	state which represent molecules (b). From	MgBr_{2}
Br_{2}	CO	CaO	O_{2}	state which represent compounds (c). From	MgBr_{2}	Br_{2}	CO
state which represent elements							

4(a) From $\mathrm{Mn}^{2+} \quad \mathrm{Cl}^{-} \quad \mathrm{Ne} \quad \mathrm{CO}_{2} \quad \mathrm{CO}_{3}{ }^{2-} \quad \mathrm{MnO}_{4}{ }^{-} \quad$ state which are ions
(b) From $\mathrm{Mn}^{2+} \mathrm{Cl}^{-} \quad \mathrm{Ne} \quad \mathrm{CO}_{2} \quad \mathrm{CO}_{3}{ }^{2-} \quad \mathrm{MnO}_{4}{ }^{-}$state which are compounds
(c) From $\mathrm{Mn}^{2+} \quad \mathrm{Cl}^{-} \quad \mathrm{Ne} \quad \mathrm{CO}_{2} \quad \mathrm{CO}_{3}{ }^{2-} \quad \mathrm{MnO}_{4}^{-} \quad$ state which are compound ions
(d) From $\mathrm{Mn}^{2+} \mathrm{Cl}^{-} \quad \mathrm{Ne} \quad \mathrm{CO}_{2} \quad \mathrm{CO}_{3}{ }^{2-} \mathrm{MnO}_{4}^{-} \quad$ state which are molecular ions

Section B Symbols, Formulae and names

1 (a) Is O^{2-} called an oxygen ion or an oxide ion?
(b) Is Ca^{2+} called a calcium ion or a calcide ion?
(c) Is Si^{4-} called a silicon ion, a silicide ion or a silicate ion?
(d) Is $\mathrm{CO}_{3}{ }^{2-}$ called a carbon ion, a carbide ion or a carbonate ion?

2(a) What can you tell (in general) when the name of an ion has an -ide ending eg nitride ion?
(b) What can you tell (in general) when the name of an ion has an -ate ending eg nitrate ion?
(c) Give the names and formulas of three common non metal -ate ions

3 Give the names of the following so that the person reading the name can tell them all apart from just the name ie use
molecule / atom / ion etc after the name
(a) H
(b) H_{2}
(c) H^{+}
(d) H^{-}

4 Give the names of the following so that the person reading the name can tell them all apart from just the name
(a) S^{2-}
(b) S
(c) SO_{2}
(d) S_{8}
e) $\mathrm{SO}_{4}{ }^{2-}$

5 Give the names of the following so that the person reading the name can tell them all apart from just the name
(a) Fe^{2+}
(b) Fe^{3+}
(c) MnO
(d) MnO_{2}
(e) MnO_{4}^{+}

6 Give the formula of the ions present in the following dissolve AND ALSO give the numbers of each type of ions present eg $\mathrm{Na}_{2} \mathrm{O}=2 \mathrm{Na}^{+}+\mathbf{O}^{\mathbf{2}}$
a) NaCl
b) HCl
c MgBr_{2} d $\mathrm{Al}_{2} \mathrm{O}_{3}$ e LiOH
$\mathrm{fH}_{2} \mathrm{SO}_{4} \quad \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2} \quad$ h $\mathrm{H}_{3} \mathrm{PO}_{4}$
i) HClO
j) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \quad \mathrm{k} \mathrm{H}_{2} \mathrm{TeO}_{3} \quad$ I $\mathrm{Cf}_{2}\left(\mathrm{TeO}_{3}\right)_{3} \quad \mathrm{~m} \quad \mathrm{CaC}_{2} \mathrm{O}_{4} \quad \mathrm{n} \mathrm{Sm}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{5}$
o) Name a-I

a oxide ion	b sodium ion
c Aluminium ion	d bromide ion
e nitride ion	f magnesiumion
g sulfide ion	h cobalt ion
silver ion	j iron(II) ion
k iron(III) ion	I lead(IV) ion
m phosphide ion	n bismuth ion
0 selenide ion	p carbide ion
q polonium ion	r hydrogen ion
s hydride ion	t copper(l) ion

2. Write the formula for the following ions
a carbonate ion
b nitrate ion
c ammonium ion
d sulphate ion
e hydroxide ion
f hydrogencarbonate ion
3.Suggest the names of the following ions

a C^{4-}	b $\mathrm{CO}_{3}{ }^{2-}$
c Si^{4-}	d $\mathrm{SiO}_{3}{ }^{\text {2- }}$
e N^{3-}	$f \mathrm{NO}_{3}{ }^{-}$
g P^{3-}	h $\mathrm{PO}_{4}{ }^{3-}$
i Cl^{-}	j $\mathrm{ClO}_{3}{ }^{-}$
	I $\mathrm{SO}_{4}{ }^{2-}$
$\mathrm{m} \mathrm{Br}^{-}$	$\mathrm{n} \mathrm{BrO}_{3}^{-}$
	$\mathrm{p} \mathrm{SeO}{ }_{4}{ }^{2}$
q ${ }^{-}$	r $\mathrm{IO}_{3}{ }^{-}$
$s \mathrm{Te}^{2-}$	$\mathrm{t} \mathrm{TeO}_{4}{ }^{2}$
$u \mathrm{As}^{3-}$	

4.Suggest the names of the following

a Cl_{2}	b Cl	
c Cl^{-}	d Cl	
e ClO_{3}^{-}	f $\mathrm{HCl}^{-}(\mathrm{g})$	
g	$\mathrm{HCl}(\mathrm{aq})$	h HClO 3 (aq)

5.Suggest the names of the following
a Br_{2}
c Br^{-}
e BrO_{3}
g $\mathrm{HBr}(\mathrm{aq})$
b Br
d Br^{+}
f $\mathrm{HBr}(\mathrm{g})$
h $\mathrm{HBrO}_{3}(\mathrm{aq})$
5. State the two ions AND The number of each type of ion of the following. Note some can be worked out by knowing just the formula of one ion and by knowing that overall the compound has no charge)
EXAMPLE
answer
$\mathrm{Ca}(\mathrm{OH})_{2}$
a NaCl
b $\mathrm{Na}_{2} \mathrm{O}$
c BaBr_{2}
d $\mathrm{Al}(\mathrm{OH})_{3}$
e $\mathrm{K}_{2} \mathrm{SO}_{4}$
f $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
g MgCO_{3}
h $\mathrm{Ga}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
$1 \mathrm{~Pb}\left(\mathrm{SO}_{4}\right)_{2}$
j CuCl_{2}
$k \mathrm{Fe}_{2} \mathrm{O}_{3}$
I $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
m CaSO_{4}
n $\mathrm{Li}_{2} \mathrm{CO}_{3}$
o $\mathrm{NH}_{4} \mathrm{Cl}$
p KNO_{3}
q $\mathrm{NH}_{4} \mathrm{NO}_{3}$
$r \mathrm{NH}_{4} \mathrm{OH}$
s $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$
$t \mathrm{NaHCO}_{3}$
u $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
$\checkmark \mathrm{FeCO}_{3}$
w $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$x \quad \mathrm{~K}_{3} \mathrm{PO}_{4}$
y MgSiO_{3}
$z \quad \ln \left(\mathrm{NO}_{3}\right)_{3}$
EXTENSION
$\alpha \mathrm{Ca}\left(\mathrm{MnO}_{3}\right)_{2}$
$\beta \quad \mathrm{Na}_{2} \mathrm{CrO}_{4}$
$\chi \quad \mathrm{Sr}\left(\mathrm{ClO}_{3}\right)_{2}$
$\delta \quad \mathrm{Ga}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$
$\varepsilon \mathrm{Cf}\left(\mathrm{NO}_{3}\right)_{3}$
$\phi \quad \mathrm{Au}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
$\gamma \quad\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$

Compound	+ve	$\begin{aligned} & \hline \text {-ve } \\ & \text { ion } \end{aligned}$	FORMULA	Compound	+ve ion	$\begin{aligned} & \hline \text {-ve } \\ & \text { ion } \\ & \hline \end{aligned}$	FORMULA
Sodium chloride				Gallium hydrogencarbonate			
Barium oxide				Ammonium hydrogencarbonate			
Magnesium chloride				Potassium hydrogencarbonate			
Potassium oxide				Iron(II)hydrogencarbonate			
Copper(I) oxide				Bismuth(V)hydroxide			
Aluminium Bromide				Gold(III)oxide			
Lead(IV)fluoride				Aluminium sulphate			
Tin(IV)oxide				Silver carbonate			
Aluminium oxide				Chromium(IV)oxide			
Bismuth(V)bromide				Strontium nitrate			
Vanadium(V)oxide				Potassium phosphate			
Polonium(VI)iodide				Tin nitrate			
Polonium(VI)oxide				Ammonium sulphate			
Sodium sulphide				Calcium silicate (guess)			

IONIC FORMULAE 2

Compound	+ve	$\begin{aligned} & \text {-ve } \\ & \text { ion } \\ & \hline \end{aligned}$	FORMULA	Compound	$\begin{aligned} & \text { +ve } \\ & \text { ion } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text {-ve } \\ \text { ion } \end{array}$	FORMULA
Barium sulphate				Gallium hydrogencarbonate			
Sodium carbonate				Sodium oxide			
caesium sulphide				Lithium sulphate			
Ammonium sulphate				Calcium lodide			
Copper(I) oxide				strontium hydroxide			
Lithium hydrogencarbonate				Indium oxide			
Strontium hydroxide				Platinum(II)chloride			
Copper(II)carbonate				Potassium selenide			
Zinc hydrogen carbonate				Rubidium sulphate			
Aluminium nitrate				Calcium carbonate			
Ammonium carbonate				Gallium nitride			
Silver carbonate				Aluminium hydroxide			
Barium nitrate				Gold nitrate			
Aluminium fluoride				Calcium silicate (guess)			
Potassium sulphate				Titanium(IV) oxide			
Francium astatide				Ammonium nitride			
Magnesium hydroxide				Bismuth(V) oxide			
Ammonium bromide				Gallium telluride			
Indium carbonate				Copper(II)hydroxide			
Magnesium hydroxide				Iron(III) hydrogencarbonate			
Silver sulphate				Lithium phosphide			
Nickel(II) Chloride				Cadmium Nitride			

EXTENSION FORMULA QUESTIONS: (1) By looking for patterns in the formulae below, try to find a link between

 the: Roman Numerals, number of oxygens, overall charge on the ion and the position of the element in the periodic table for the formulas below. Suggest what the Roman Numerals may represent.Chlorate(I) ion $=\mathrm{ClO}^{-}$
Chlorate (V) ion $=\mathrm{ClO}_{3}{ }^{-}$
Bromate (I) ion $=\mathrm{BrO}^{-}$
phosphate (V) ion $=\mathrm{PO}_{4}^{3-}$ phosphate(III) ion $=\mathrm{PO}_{3}{ }^{3-}$
sulphate(VI) ion $=\mathrm{SO}_{4}{ }^{2-}$
Sulphate(IV) ion $=\mathrm{SO}_{3}{ }^{2-}$
Nitrate(V) ion $=\mathrm{NO}_{3}{ }^{-}$
Nitrate(III) ion $=\mathrm{NO}_{2}{ }^{-}$
Selenate(IV) ion $=\mathrm{SeO}_{3}{ }^{2-}$
2. Work out the formula of the following
a) ammonium chlorate(I)
b) lead(II)phosphate(V)
e) Antinomy bromate(I)
g) \quad Iridium phosphate(V)
h) Bismuth Tellurate(IV)
$\begin{array}{ll}\text { c) } & \text { tin(IV)phosphate(III) } \\ \text { f) } & \text { Ruthenium(III)chlorate(V) } \\ \text { i) } & \text { Gallium lodate(V) }\end{array}$

FORMULAE OF COVALENT MOLECULES: Give the formula of the following (these have to be remembered)

Name	Formula	Name	Formula	Name	Formula
Water		Methane		Ethanoic acid	
Ammonia		Ethanol		Carbonic acid	
Glucose				Hydrogen peroxide	

(2) Formula which can be worked out just from the name and knowing number of atoms from the prefixes,

di $=$	penta $=$	mon $(0)=$	tetra $=$	tri $=$	hexa $=$	deca $=$	octa $=$

and the valency / oxidation number : give the common valency(s) for the groups

group	1	2	3	4	5	6	7	8
Valency(s)								

Compound	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \end{array}$	$\begin{array}{\|l\|} \hline 2^{\text {nd }} \end{array}$	FORMULA	Compound	FORMULA		$\begin{aligned} & \hline \mathbf{2}^{\text {nd }} \end{aligned}$	Does the valency agree with the formula?
Hydrogen fluoride				Carbon dioxide				
Selenium bromide				Phosphorus pentachloride				
Tellurium astatide				Nitrogen trichloride				
Hydrogen sulphide				Selenium dichloride				
Boron oxide				Carbon disulphide				
Boron hydride				Arsenic trioxide				
Hydrogen telluride				Oxygen difluoride				
Boron nitride				Diphosphorus pentoxide				
Germanium hydride				Sulphur dioxide				
Germanium(IV) oxide				Diantimony pentasulfide				
Phosphorus(III) oxide				Nitrogen monoxide				
Antimony(III) oxide				Disulphur dibromide				
Silicon(IV) oxide				Dinitrogen tetroxide				
Arsenic(V) sulphide				Sulphur trioxide				
Nitrogen(I) oxide				Tetraphosphorus decaoxide				
Selenium(VI) oxide				Xenon tetroxide				

EXTENSION: By doing the Extension Question on page 3 you may be able to work out the formulae of the following

a) Phosphoric(V)acid
b) Phosphoric(III)acid
c) Chloric(I)acid
d) \quad Chloric(V)acid
e) selenic(IV)acid
f) Bromate(V)acid
j) nitric(III) acid
k) Astatic(VII) acid
I) Chromic(VI)acid

Section A: Checking basics needed for balanced symbol equations, sheet 1

DATE:

1. Give the formulae of the following SCORE /15

hydroxide ion		carbonate ion		nitric acid	
sulphate ion		Nitrate ion		Oxide ion	
Chloride ion		sulphuric acid		Zinc ion	
ammonium ion		Iron(III) ion		hydrochloric acid	
Sulphide ion		Ammonia		Silver ion	

2. State whether the following are I (ionic) C (covalent) $\quad M$ (metallic) \quad Score $\quad / 3$ (all $I=1$, all $C=1$, all $M=1$)

$\mathrm{Mg}(\mathrm{s})$	$\mathrm{NaCl}(\mathrm{s})$	$\mathrm{CO}_{2}(\mathrm{~g})$	$\mathrm{Cl}_{2}(\mathrm{~g})$	$\mathrm{HCl}(\mathrm{g})$	$\mathrm{MgCl}_{2}(\mathrm{~s})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\mathrm{Br}_{2}(\mathrm{aq})$	$\mathrm{NaCl}(\mathrm{aq})$	$\mathrm{CO}_{2}(\mathrm{aq})$	$\mathrm{Cl}_{2}(\mathrm{aq})$	$\mathrm{HCl}(\mathrm{aq})$	$\mathrm{MgCl}_{2}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

3. A possible area of confusion when writing eqautions is knowing when to use diatomic formula - ONLY when certain elements ($\mathrm{H}, \mathrm{F}, \mathrm{Br}, \mathrm{O}, \mathrm{N}, \mathrm{I}, \mathrm{Cl}, \mathrm{At}$) are uncombined and when not to use this list (all other times). For the equations below:
(i) Write above the equation whether the substance is I, C or M,
(ii) Then CIRCLE all the formulae that you need to use HFBrONICIAt with

e) Magnesium + hydrochloric acid(aq) \rightarrow magnesium chloride + hydrogen
f) Aluminium bromide $(\mathrm{aq})+$ nitrogen \rightarrow aluminum nitride + bromine $(a q)$
g) Strontium carbonate + sulfuric acid (aq) \rightarrow strontium sulfate + carbon dioxide + water
h) Chlorine + hydrogen \rightarrow hydrogen chloride
i) Copper(I)oxide + nitric acid(aq) \rightarrow copper(I)nitrate + water
j) Silver + chlorine \rightarrow silver chloride

Section A: Checking basics needed for writing balanced symbol equations, sheet 2

DATE:

1. Give the formulae of the following

SCORE
/21

Chloride ion		Ammonia		nitric acid	
sulphate ion		Sulphide ion		Silver ion	
sulphuric acid		Zinc ion		ammonium ion	
Nitrate ion		ethanoate ion		hydrochloric acid	
carbonate ion		ethanoic acid		hydroxide ion	
Iron(III) ion		Strontium		Nitride ion	
Selenide ion		Iodide ion		Phosphide ion	

I/C or	Name	If C or M	if Ionic, work out ions then number of each needed				
M?		formula	no	+ve ion	no	- ve ion	formula
I	Sodium oxide	----	2	Na^{+}	1	O^{2-}	$\mathrm{Na}_{2} \mathrm{O}$
C	oxygen	O_{2}	--	--	--	--	--
M	sodium	Na	--	--	--	--	--
I	Calcium hydroxide	--	1	Ca^{2+}	2	OH^{-}	$\mathrm{Ca}(\mathrm{OH})_{2}$
	Carbon dioxide						
	Magnesium oxide						
	Iron(III) chloride						
	Chlorine						
	Barium chloride						
	Calcium carbonate						
	Sodium carbonate						
	Aluminum carbonate						
	silver sulphate						
	Iron(III) sulphate						
	Lead(IV) nitrate						
	Lead(IV) nitride						

Section A: Checking basics needed for writing balanced symbol equations, SEE PAGE 1 of notes for worked example
Step 1: Work out if C, M or an acid and write their formula below their name. Step 2: Above any ionic substance write the + and ions and the number of each ion needed ; Step 3: Below write in the formula of each substance SEPARATELY - DO NOT LOOK AT ANY OTHER SUBSTANCE ; Step 4: Only balance (with big numbers in from of formula) when you have completed step 3, NOTE do not change any of the formula, you are only allowed to balance with big numbers in front

1.					
Aluminium	+ chlorine	\rightarrow	Aluminium chloride		

2.					
	Calcium carbonate	\rightarrow	Calcium oxide	+ carbon dioxide	

3.					
	sodium carbonate	\rightarrow	Sodium oxide	+ carbon dioxide	

4.					
Magnesium	+ hydrochloric acid	\rightarrow	Magnesium chloride	+ hydrogen	

5.					
Sodium hydroxide	+ nitric acid	\rightarrow	Sodium nitrate	+ water	

6.					
Calcium hydroxide	+ nitric acid	\rightarrow	Calcium nitrate	+ water	

7.					
Aluminium hydroxide	+ nitric acid	\rightarrow	Aluminium nitrate	+ water	

8.					
Lead(IV) hydroxide	+ nitric acid	\rightarrow	Lead(IV) nitrate	+ water	

9.					
potassium hydroxide	+ sulphuric acid	\rightarrow	potassium sulphate	+ water	

10.					
Gallium bromide	+ oxygen	\rightarrow	Gallium oxide	+ bromine	

1. Magnesium + hydrochloric acid \rightarrow
2. Calcium oxide + sulphuric acid \rightarrow
3. sodium hydroxide + nitric acid \rightarrow
4. Magnesium carbonate + hydrochloric acid \rightarrow
5. sodium hydrogencarbonate + sulphuric acid \rightarrow
6. silver oxide + hydrochloric acid \rightarrow
7. Lithium + sulphuric acid \rightarrow
8. Calcium hydroxide + nitric acid \rightarrow
9. potassium carbonate + hydrochloric acid \rightarrow
10. Barium hydrogencarbonate + nitric acid \rightarrow
11. sulphuric acid + barium oxide \rightarrow
12. Gallium hydroxide + ethanoic acid \rightarrow

13. Tin(II) hydroxide + hydrochloric acid \rightarrow
14. Bismuth + nitric acid \rightarrow
15. Iron(III)carbonate + sulphuric acid \rightarrow
16. ammonium hydrogencarbonate + ethanoic acid \rightarrow
17. silver carbonate + phosphoric acid \rightarrow
18. ammonia + sulfuric acid \rightarrow
19. Calcium hydroxide + sulphuric acid \rightarrow
20. Caesium carbonate + hydroiodic acid \rightarrow
21. Polonium(VI) hydrogencarbonate + ethanoic acid \rightarrow

WRITE BALANCED SYMBOL EQUATIONS FOR THE FOLLOWING

SECTION A : remember HF BrONICIAt

1 Calcium + oxygen \rightarrow calcium oxide
2 Sodium + sulphur \rightarrow sodium sulphide
3 hydrogen + oxygen \rightarrow water
4 lodine + calcium \rightarrow calcium iodide
5 Magnesium + hydrochloric acid \rightarrow magnesium chloride + hydrogen
6 Aluminium + bromine \rightarrow aluminum bromide
7 Strontium carbonate + sulfuric acid \rightarrow strontium sulfate + carbon dioxide + water
8 Chlorine + hydrogen \rightarrow hydrogen chloride
9 Copper(I)oxide + nitric acid \rightarrow copper(I)nitrate + water
10 Silver + oxygen \rightarrow silver oxide
11 Tin + oxygen \rightarrow Tin(IV) oxide
12 Sodium + water \rightarrow sodium hydroxide + hydrogen
13 Calcium hydroxide + hydrochloric acid \rightarrow calcium chloride + water
14 Magnesium + water \rightarrow magnesium hydroxide + hydrogen
15 Barium nitrate \rightarrow barium oxide + nitrogen dioxide + oxygen

SECTION B Formation of oxides

a copper + oxygen \rightarrow copper(II)oxide
b copper + oxygen \rightarrow copper(I)oxide
c nitrogen + oxygen \rightarrow nitrogen monoxide
d nitrogen monoxide + oxygen \rightarrow nitrogen dioxide
e methane + oxygen \rightarrow carbon monoxide + water
f phopshorus $\left(P_{4}\right)+$ oxygen \rightarrow tetraphosphorus hexoxide
g magnesium carbonate \rightarrow magnesium oxide + carbon dioxide
h calcium hydroxide \rightarrow calcium oxide + water
I Calcium nitrate \rightarrow calcium oxide + nitrogen dioxide + oxygen
j aluminium carbonate \rightarrow aluminium oxide + carbon dioxide
k Lithium nitrate \rightarrow lithium oxide + nitrogen dioxide + oxygen

SECTION C displacement

a) sodium oxide + potassium \rightarrow potassium oxide + sodium
b) Lithium + strontium oxide \rightarrow lithium oxide + strontium
c) Zinc oxide + carbon monoxide \rightarrow carbon dioxide + zinc
d) Copper(II) sulphate + magnesium \rightarrow magnesium sulphate + copper
e) Aluminium chloride + lithium \rightarrow lithium chloride + aluminium
f) copper(II)nitrate + Gallium \rightarrow Gallium nitrate + copper
g) chlorine + sodium bromide \rightarrow sodium bromide + chlorine
h) Thallium iodide + bromine \rightarrow thallium bromide + iodine
i) phosphorus(III) fluoride + nitrogen \rightarrow phosphorus + nitrogen fluoride

SECTION D: Reaction of Oxides

(a) Lithium oxide + water \rightarrow lithium hydroxide
(b) Calcium hydroxide + carbon dioxide \rightarrow calcium carbonate + water
(c) sulphur trioxide + water \rightarrow sulphuric acid
(d) Sulphuric acid + sodium oxide \rightarrow sodium sulphate + water
(e) magnesium oxide + Hydrochloric acid \rightarrow magnesium chloride + water
(f) Sulphur trioxide + Calcium oxide \rightarrow calcium sulphate
(g) Aluminium oxide + water \rightarrow Aluminium hydroxide
(h) carbon dioxide + water \rightarrow carbonic acid
(i) Strontium hydroxide + nitric acid \rightarrow strontium nitrate + water
(I) Sulphuric acid + Gold(I) oxide \rightarrow Gold(I) sulphate + water
(m) Potassium hydroxide + carbon dioxide \rightarrow potassium carbonate + water
(n) Lead(II)oxide + Nitrogen dioxide + oxygen \rightarrow Lead(II) nitrate
(0) Hydrochloric acid + Aluminium oxide \rightarrow aluminium chloride + water
(p) Gallium hydroxide + nitric acid \rightarrow Gallium nitrate + water

EXTENSION (r) Tin(IV)oxide + phosphoric acid \rightarrow Tin(IV)phosphate + water
EXTENISON (q) Silicon dioxide + Thallium(III) oxide \rightarrow Thallium(III) silicate

SECTION E Miscellaneous 1

a Aluminium hydroxide \rightarrow aluminium oxide + water
b Lithium nitrate \rightarrow lithium oxide + nitrogen dioxide + oxygen
c Potassium nitrate \rightarrow Potassium nitrite + oxygen (look up nitrite ion)
d Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)+$ oxygen \rightarrow carbon dioxide + water
e Pentanol $\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}\right)+$ oxygen \rightarrow carbon dioxide + water
f Copper(II) nitride + oxygen \rightarrow Copper(II) oxide + nitrogen monoxide + nitrogen dioxide
g Ammonia + oxygen \rightarrow nitrogen monoxide + water
h Bismuth(V) oxide + Phopshoric acid \rightarrow Bismuth (V) phosphate + water
(look up sulphurous acid and sulphite ion)
I Thallium(III) hydrogencarbonate + sulphurous acid \rightarrow Thallium(III) sulphite + water + carbon dioxide
j Lead(IV)oxide + sulphurous acid \rightarrow Lead(IV) sulphite + water
k Polonium hydroxide + ammonium sulfate \rightarrow polonium sulfate + ammonia + water
I zinc + nitric acid \rightarrow zinc(II)nitrate + nitrogen dioxide + water
m Iron(III)oxide + carbon monoxide \rightarrow iron + carbon dioxide
$\mathrm{n} \quad$ gallium hydrogencarbonate + chloric acid \rightarrow gallium chlorate + water + carbo

SECTION F Miscellaneous 2

1 Thallium(III)sulphite + magnesium \rightarrow thallium + magnesium sulphite (look up sulphite ion)
2 Barium + nitrogen \rightarrow barium nitride
3 Iron(III)sulphate \rightarrow Iron(III)oxide + sulphur trioxide
4 Lithium nitrate \rightarrow lithium oxide + nitrogen dioxide + oxygen
5 alumium oxide + sodium hydroxide \rightarrow sodium aluminate + water (look up aluminate ion)
6 ammoniumcarbonate + nitrous acid \rightarrow ammonium nitrite + carbon dioxide + water (look up nitrous acid/nitrite ion)
7 gallium sulphide + hydrobromic acid \rightarrow gallium bromide + hydrogen sulphide
8 calcium hydroxide + phosphoric acid \rightarrow calcium phosphate + water
9 gallium hydrogencarbonate + chloric (V) acid \rightarrow gallium chlorate $(\mathrm{V})+$ water + carbon dioxide
10 Lead(IV)oxide + sulphurous acid \rightarrow Lead(IV)sulphite + water (look up sulphurous acid and sulphite ion)
11 Bismuth (V) hydroxide + ammonium sulfate \rightarrow bismuth (V) sulfate + ammonia + water
12 Zinc oxide + Aluminum hydroxide \rightarrow aluminium zincate + water (look up zincate ion)

SECTION G : From the following, write the word equation and then the full balanced equation
1 aluminium + iodine
2 potassium hydroxide + sulphuric acid
3 lithium + oxygen
4 lead(II) oxide with nitric acid
5 polonium + nitrogen
6 ammonium carbonate + hydrochloric acid
7 water + sodium
8 Iron(II)hydrogencarbonate + phosphoric acid
9 calcium + water
10 Gallium + chloric acid
11 carbon dioxide + sodium hydroxide
12 Thermal decomposition of aluminium nitrate
13 complete combustion of $\mathrm{CH}_{3} \mathrm{SH}$
14 silicon oxide + sodium oxide \rightarrow
15 gallium + hydroiodic acid
16 carbon dioxide + aluminium oxide \rightarrow ONE PRODUCT
17. sulphur trioxide + copper oxide \rightarrow ONE PRODUCT

18 magnesium hydroxide + aluminium oxide \rightarrow magnesium aluminate + water
19. nitrogen dioxide + oxygen + barium oxide \rightarrow ONE PRODUCT

20 carbon dioxide + sodium oxide \rightarrow ONE PRODUCT
21. phosphorous trioxide + calcium oxide + oxygen
22. Incomplete combustion of dodecane
23. Comubstion of ammonia
24. Formation of phosphorus pentachloride from its elements
25. Formation of dichlorine heptaoxide from

ANSWERS

BALANCING EQUATIONS 1

A PbO_{2}	no. of $\mathrm{Pb}=1$	no. of $\mathrm{O}=2$		
b	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	no. of $\mathrm{Al}=1$	no. of $\mathrm{O}=9$	no. of $\mathrm{N}=3$
c	$\mathrm{Bi}_{2}\left(\mathrm{SeO}_{3}\right)_{5}$	no. of $\mathrm{Bi}=2$	no. of $\mathrm{O}=15$	no. of $\mathrm{Se}=5$
d	$2 \mathrm{Li}_{2} \mathrm{~S}$	no. of $\mathrm{Li}=4$	no of $\mathrm{S}=2$	
e $\quad 3 \mathrm{H}_{2} \mathrm{SO}_{4}$	no. of $\mathrm{H}=6$	no. of $\mathrm{O}=12$	no. of $\mathrm{S}=3$	
f	$2\left(\mathrm{NH}_{4}\right)_{3} \mathrm{AsO}_{4}$	no. of $\mathrm{H}=24$	no. of $\mathrm{O}=8$	no. of $\mathrm{As}=2$

2. Balance the following equations. $1 / 2 \mathrm{~s}$ are ok for diatomics eg $3.5 \mathrm{O}_{2}$ is fine as it leads to a whole number of atoms, cant do $1 / 2 \mathrm{~s}$ for $\mathrm{eg} \mathrm{CO}_{2}$ as give $1 / 2$ a C atom

A	H_{2}	+	Cl_{2}	\rightarrow	2 HCl			
B	2 Ba	+	O_{2}	\rightarrow		2 BaO		
C	2 HCl	+	Mg	\rightarrow	MgCl_{2}	+	H_{2}	
D	2K	+	$2 \mathrm{H}_{2} \mathrm{O}$	\rightarrow	2 KOH	+	H_{2}	
E	$\mathrm{Mg}(\mathrm{OH})_{2}$	+	$2 \mathrm{HNO}_{3}$	\rightarrow	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	+	$2 \mathrm{H}_{2} \mathrm{O}$	
F	$\mathrm{H}_{2} \mathrm{SO}_{4}$	+	2 Na	\rightarrow	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	+	H_{2}	
G	4 In	+	$3 \mathrm{O}_{2}$	\rightarrow	$2 \mathrm{In}_{2} \mathrm{O}_{3}$			
$\mathrm{H} \quad \mathrm{PbCO}_{3}$	+	2 HCl	\rightarrow	PbCl_{2}	+	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$
I	$\mathrm{Ca}(\mathrm{OH})_{2}$	+	$\mathrm{H}_{2} \mathrm{SeO}_{4}$	\rightarrow	CaSeO_{4}	+	$2 \mathrm{H}_{2} \mathrm{O}$	
J	2 Na	+	2 HCl	\rightarrow	2 NaCl	+	H_{2}	
K	2 LiOH	+	$\mathrm{H}_{2} \mathrm{SO}_{4}$	\rightarrow	$\mathrm{Li}_{2} \mathrm{SO}_{4}$	+	$2 \mathrm{H}_{2} \mathrm{O}$	
$\mathrm{L} \quad \mathrm{CaCO}_{3}$	+	$2 \mathrm{HNO}_{3}$	\rightarrow	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	+	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$
M	$2 \mathrm{NH}_{4} \mathrm{OH}$	+	$\mathrm{H}_{2} \mathrm{SeO}_{4}$	\rightarrow	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SeO}_{4}$	+	$2 \mathrm{H}_{2} \mathrm{O}$	
N $\mathrm{Ba}\left(\mathrm{HCO}_{3}\right)_{2}$	$+2 \mathrm{HNO}_{3}$	\rightarrow	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	+	$2 \mathrm{CO}_{2}$	+	$2 \mathrm{H}_{2} \mathrm{O}$	
0	2 Al	+	$6 \mathrm{HNO}_{3}$	\rightarrow	$2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	+	$3 \mathrm{H}_{2}$	
P	$2 \mathrm{C}_{2} \mathrm{H}_{6}$	+	$5 \mathrm{O}_{2}$	\rightarrow	4CO	+	$6 \mathrm{H}_{2} \mathrm{O}$	
Q $\mathrm{In}_{2}\left(\mathrm{CO}_{3}\right)_{3}$	+ 6 HCl	\rightarrow	2 lnCl 3	+	$3 \mathrm{H}_{2} \mathrm{O}$	+	$3 \mathrm{CO}_{2}$	
R	$\mathrm{Ru}_{2} \mathrm{O}_{3}$	+	3 CO	\rightarrow	2 Ru	+	$3 \mathrm{CO}_{2}$	
S	$\mathrm{Ga}_{2} \mathrm{~S}_{3}$	+	$6 \mathrm{HNO}_{3}$	\rightarrow	$2 \mathrm{Ga}\left(\mathrm{NO}_{3}\right)_{3}$	+	$3 \mathrm{H}_{2} \mathrm{~S}$	
T $2 \mathrm{H}_{3} \mathrm{PO}_{4}+$	$3 \mathrm{Cu}\left(\mathrm{HCO}_{3}\right)_{2}$	\rightarrow	$\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	+	$6 \mathrm{CO}_{2}$	+	$6 \mathrm{H}_{2} \mathrm{O}$	
U	$2 \mathrm{C}_{4} \mathrm{H}_{10}$	+	$13 \mathrm{O}_{2}$	\rightarrow	$8 \mathrm{CO}_{2}$	+	$10 \mathrm{H}_{2} \mathrm{O}$	
V	2 RbOH	+	$\mathrm{H}_{2} \mathrm{TeO}_{4}$	\rightarrow	$\mathrm{Rb}_{2} \mathrm{TeO}_{4}$	+	$2 \mathrm{H}_{2} \mathrm{O}$	
W	$2 \mathrm{CH}_{3} \mathrm{OH}$	+	$3 \mathrm{O}_{2}$	\rightarrow	$2 \mathrm{CO}_{2}$	+	$4 \mathrm{H}_{2} \mathrm{O}$	
x	$3 \mathrm{NH}_{3}$	+	$\mathrm{H}_{3} \mathrm{PO}_{4}$	\rightarrow		$\left.\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$		
Y	$2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$		\rightarrow	2 CuO	+	$4 \mathrm{NO}_{2}$	+	O_{2}
Z	$2 \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$	+	$15 \mathrm{O}_{2}$	\rightarrow	$10 \mathrm{CO}_{2}$	+	$12 \mathrm{H}_{2} \mathrm{O}$	
(1)	$2 \mathrm{C}_{18} \mathrm{H}_{38}$	+	$55 \mathrm{O}_{2}$	\rightarrow	$36 \mathrm{CO}_{2}$	+	$38 \mathrm{H}_{2} \mathrm{O}$	
(2)	$4 \mathrm{NH}_{3}$	+	$5 \mathrm{O}_{2}$	\rightarrow	4NO	+	$6 \mathrm{H}_{2} \mathrm{O}$	
(3) $4 \mathrm{HNO}_{3}$	$+\mathrm{Cu}$	\rightarrow	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	+	$2 \mathrm{NO}_{2}$	+	2 H 2 O	

BALANCING EQUATION QUESTIONS 2

1 State the number of each type of atom in the following. Where the formula has a balancing number, take the balancing number into account when working out the number of each type of atom.

a	$\mathrm{Ga}_{2} \mathrm{O}_{3}$	no. of $\mathrm{Ga}=2$	no. of $\mathrm{O}=3$	
b	HNO_{3}	no. of $\mathrm{H}=1$	no of $\mathrm{N}=1$	no. of $\mathrm{O}=3$
c	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	no. of $\mathrm{S}=3$	no of $\mathrm{O}=12$	no. of $\mathrm{Al}=2$
d	$2 \mathrm{MgCl}_{2}$	no. of $\mathrm{Mg}=2$	no of $\mathrm{Cl}=4$	
e	$3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	no. of $\mathrm{O}=18$	no of $\mathrm{Ca}=3$	no. of $\mathrm{N}=6$

2. Balance the following equations

A	H_{2}	+	Br_{2}	\rightarrow	2 HBr				
B	Cu	+	$0.5 \mathrm{O}_{2}$	\rightarrow		CuO			
C	Na	+	$\mathrm{H}_{2} \mathrm{O}$	\rightarrow	NaOH	+	$0.5 \mathrm{H}_{2}$		
D	$\mathrm{Mg}(\mathrm{OH})_{2}$	+	$2 \mathrm{HNO}_{3}$	\rightarrow	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	+	$2 \mathrm{H}_{2} \mathrm{O}$		
E	2Li	+	$0.5 \mathrm{O}_{2}$	\rightarrow	$\mathrm{Li}_{2} \mathrm{O}$				
F	2 Al	+	$1.5 \mathrm{O}_{2}$	\rightarrow	$\mathrm{Al}_{2} \mathrm{O}_{3}$				
G	2 KOH	+	$\mathrm{H}_{2} \mathrm{SO}_{4}$	\rightarrow	$\mathrm{K}_{2} \mathrm{SO}_{4}$	+	$2 \mathrm{H}_{2} \mathrm{O}$		
H	CaCO_{3}	+	2 HCl	\rightarrow	CaCl_{2}	+	CO_{2}	+	$\mathrm{H}_{2} \mathrm{O}$
1	$\mathrm{C}_{2} \mathrm{H}_{6}$	+	$3.5 \mathrm{O}_{2}$	\rightarrow	$2 \mathrm{CO}_{2}$	+	$3 \mathrm{H}_{2} \mathrm{O}$		
J		$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$		\rightarrow	CuO	+	$2 \mathrm{NO}_{2}$	+	$0.5 \mathrm{O}_{2}$
K	$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$	+	$2 \mathrm{HNO}_{3}$	\rightarrow	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	+	$2 \mathrm{CO}_{2}$	+	$2 \mathrm{H}_{2} \mathrm{O}$
L	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	+	$4.5 \mathrm{O}_{2}$	\rightarrow	$3 \mathrm{CO}_{2}$	+	$4 \mathrm{H}_{2} \mathrm{O}$		
M	$2 \mathrm{NH}_{4} \mathrm{OH}$	+	$\mathrm{H}_{2} \mathrm{SO}_{4}$	\rightarrow	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	+	$2 \mathrm{H}_{2} \mathrm{O}$		
N	CH_{4}	+	$1.5 \mathrm{O}_{2}$	\rightarrow	CO	+	$2 \mathrm{H}_{2} \mathrm{O}$		
0	$\mathrm{Ru}_{2} \mathrm{O}_{3}$	+	3CO	\rightarrow	2 Ru	+	$3 \mathrm{CO}_{2}$		
P	$\mathrm{Ga}_{2} \mathrm{~S}_{3}$	+	$6 \mathrm{HNO}_{3}$	\rightarrow	$2 \mathrm{Ga}\left(\mathrm{NO}_{3}\right)_{3}$	+	$3 \mathrm{H}_{2} \mathrm{~S}$		
Q	$2 \mathrm{H}_{3} \mathrm{PO}_{4}$	+	$3 \mathrm{Cu}\left(\mathrm{HCO}_{3}\right)_{2}$	\rightarrow	$\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	+	$6 \mathrm{CO}_{2}$	+	$6 \mathrm{H}_{2} \mathrm{O}$

Balancing Equations Extension

Recognising atoms, silielements, molecules, compounds, ions - Page 4
1a. Molecule- made up of 2 or more atoms covalently bonded together
b. Compound- substance made up of 2 or more different types of atoms chemically bonded together

2a. $\mathrm{Br}_{2} \mathrm{COO}_{2}$
b. $\mathrm{MgBr}_{2} \mathrm{COCaO}$
c. $\mathrm{Br}_{2} \mathrm{O}_{2}$

3a. I_{3}
b. $\mathrm{CO}_{2} \mathrm{PBr}_{5}$
c. $\mathrm{InF}_{3} \mathrm{Sb}_{2} \mathrm{~S}_{5}$ [ionic compounds are not, overall, classed as molecules, though can contain molecular ions eg $\mathrm{NH}_{4} \mathrm{NO}_{3}$]

4a. $\mathrm{Mn}^{2+} \mathrm{Cl}^{-} \mathrm{CO}_{3}{ }^{2-} \mathrm{MnO}_{4}^{-}$
b. $\mathrm{CO}_{2} \quad \mathrm{CO}_{3}{ }^{2-} \mathrm{MnO}_{4}^{-}$
c. $\mathrm{CO}_{3}{ }^{2-} \mathrm{MnO}_{4}^{-}$
d. $\mathrm{CO}_{3}{ }^{2-} \quad\left[+\mathrm{MnO}_{4}^{-} \quad\right.$ A level $]$

Section B Symbols, Formulae and names

1a. oxide ion
b. calcium ion
c. silicide ion
d. carbonate ion

2a. has the general formula X^{n-} where $X=$ non-metal ion (usually exception OH^{-})
b. has the general formula $\mathrm{XO}_{y}{ }^{n-}$
c) It's has positive charge and usual a metal ion
d. e.g. Nitrate ion $-\mathrm{NO}_{3}^{-}$, Carbonate ion- $\mathrm{CO}_{3}{ }^{2-}$,

Sulfate ion- $\mathrm{SO}_{4}{ }^{2-}$ [A level Manganate ion MnO_{3}^{-}]

3a. hydrogen atom
b. hydrogen molecule
c. hydrogen ion
d. hydride ion

4a. sulfide ion
b. sulfur atom
c. sulfur ion
d. sulfur molecule
e. sulfur dioxide
f. sulfate ion

5a. Iron(II) ion
b. Iron(III) ion
c. Manganese(II)oxide or Manganese oxide
d. Manganese dioxide or Manganese(IV)oxide
e. Manganate ion or Manganate(V) ion

6a. $\mathrm{Na}^{+}+\mathrm{Cl}^{-}$
b. $\mathrm{H}^{+}+\mathrm{Cl}^{-}$
c. $\mathrm{Mg}^{2+}+2 \mathrm{Br}^{-}$
d. $2 \mathrm{Al}^{3+}+3 \mathrm{O}^{2-}$
e. $\mathrm{Li}^{+}+\mathrm{OH}^{-}$
f. $2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}$
g. $\mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$
h. $3 \mathrm{H}^{+}+\mathrm{PO}_{4}^{3-}$
i. $\mathrm{H}^{+}+\mathrm{ClO}_{3}^{-}$
j. $2 \mathrm{NH}_{4}+\mathrm{CO}_{3}{ }^{2}$
k. $2 \mathrm{H}^{+}+\mathrm{TeO}_{4}{ }^{2-}$
l. $2 \mathrm{Cf}^{3+}+3 \mathrm{TeO}_{4}{ }^{2-}$
m. $\mathrm{Ca}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
n. $2 \mathrm{Sm}^{5+}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
o. a) sodium chloride
b) hydrogen chloride
c) magnesium bromide
d) aluminium oxide
e) lithium hydroxide
f) sulfuric acid
g) calcium hydroxide
h) phosphoric acid
i) chloric acid
j) ammonium carbonate
k) telluric acid
l) californium(III) tellurate

1. Formulae from names : using the periodic table write the formula for the following ions
a oxide ion $\mathbf{O}^{\mathbf{2 -}} \quad$ b sodium ion $\mathbf{N a}^{+}$
c Aluminium ion Al^{3+} d bromide ion Br^{-}
e nitride ion $\mathbf{N}^{\mathbf{3 -}} \quad f$ magnesium ion $\mathbf{M g}^{\mathbf{2 +}}$
g sulfide ion $\mathbf{S}^{\mathbf{2 -}} \mathrm{h}$ cobalt ion $\mathbf{C o}^{\mathbf{2 +}}$
i silver ion $\mathbf{A g}^{+} \quad$ j \quad iron(II) ion $\mathrm{Fe}^{\mathbf{2 +}}$
k iron(III) ion $\mathrm{Fe}^{3+} \quad \mathrm{I} \quad$ lead(IV) ion $\mathrm{Pb}_{4}{ }^{+}$
m phosphide ion $\mathbf{P}^{\mathbf{3 -}} \quad \mathrm{n} \quad$ bismuth ion $\mathrm{Bi}^{\mathbf{3}^{+}}$
o selenide ion $\mathbf{S e}^{\mathbf{2 -}} \quad \mathrm{p} \quad$ carbide ion $\mathbf{C l}^{4-}$
q polonium ion $\mathbf{P o}^{6+} \quad \mathrm{r}$ hydrogen ion \mathbf{H}^{+}
s hydride ion $\mathbf{H}^{-} \quad \mathrm{t} \quad$ copper(I) ion Cu^{+}
2. Write the formula for the following ions
a carbonate ion $\mathbf{C O}_{3}{ }^{\mathbf{2 -}} \quad \mathrm{b}$ nitrate ion $\mathrm{NO}_{\mathbf{3}}{ }^{-}$
c ammonium ion $\mathbf{N H}_{4}{ }^{+}$d sulphate ion $\mathbf{S O}_{4}{ }^{\mathbf{2 -}}$
e hydroxide ion $\mathbf{O H}^{-}$
f hydrogencarbonate ion $\mathrm{HCO}_{3}{ }^{-}$

3.Suggest the names of the following ions

a $\quad \mathrm{C}^{4-}$ Carbide ion
c Si^{4-} Silicide ion
e N^{3-} Nitride ion
g P^{3-} Phosphide ion
i Cl^{-}Chloride ion
$k \quad \mathrm{~S}^{2-}$ Sulfide ion
m Br ${ }^{-}$Bromide ion
o Se^{2-} Selenide ion
q I' lodide ion
s Te^{2-} Telluride ion
$u \quad \mathrm{As}^{3-}$ Arsenide ion
b $\mathrm{CO}_{3}{ }^{2-}$ Carbonate ion
d $\mathrm{SiO}_{3}{ }^{2-}$ Silicate ion
$f \mathrm{NO}_{3}{ }^{-}$Nitrate ion
h $\mathrm{PO}_{4}{ }^{3-}$ Phosphate ion
j $\mathrm{ClO}_{3}{ }^{-}$Chlorate ion
I $\mathrm{SO}_{4}{ }^{2-}$ Sulphate ion
$n \mathrm{BrO}_{3}^{-}$Bromate ion
$\mathrm{p} \mathrm{SeO}_{4}{ }^{2-}$ Selenate ion
$r \quad \mathrm{IO}_{3}{ }^{-}$lodate ion
$\mathrm{t} \mathrm{TeO}_{4}{ }^{2-}$ Tellurate ion
a) $\mathrm{Na}^{+}+\mathrm{Cl}^{-}$
b) $2 \mathrm{Na}^{+}+\mathrm{O}^{2-}$
c) $\mathrm{Ba}^{2+}+2 \mathrm{Br}-$
d) $\mathrm{Al}^{3+}+3 \mathrm{OH}^{-}$
e) $2 \mathrm{~K}^{+}+\mathrm{SO}_{4}{ }^{2-}$
f) $\mathrm{Ca}^{2+}+2 \mathrm{NO}_{3}$
g) $\mathrm{Mg}^{2+}+\mathrm{CO}_{3}{ }^{2-}$
h) $2 \mathrm{Ga}^{3+}+3 \mathrm{CO}_{3}{ }^{2-}$
i) $\mathrm{Pb}^{4+}+2 \mathrm{SO}_{4}{ }^{2-}$
j) $\mathrm{Cu}^{2+}+2 \mathrm{Cl}^{-}$
k) $2 \mathrm{Fe}^{3+}+3 \mathrm{O}^{2-}$
l) $\mathrm{Mg}^{2+}+2 \mathrm{NO}_{3}^{-}$
m) $\mathrm{Ca}^{2+}+\mathrm{SO}_{4}{ }^{2-}$
n) $2 \mathrm{Li}^{+}+\mathrm{CO}_{3}{ }^{--}$
o) $\mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}$
p) $\mathrm{K}^{+}+\mathrm{NO}_{3}^{-}$
q) $\mathrm{NH}_{4}{ }^{+}+\mathrm{NO}_{3}^{-}$
r) $\mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-}$
s) $\mathrm{Mg}^{2+}+2 \mathrm{HCO}_{3}$
t) $\mathrm{Na}^{+}+\mathrm{HCO}_{3}{ }^{-}$
u) $2 \mathrm{NH}_{4}{ }^{+}+\mathrm{SO}_{4}{ }^{2-}$
v) $\mathrm{Fe}^{2+}+\mathrm{CO}_{3}{ }^{2-}$
w) $3 \mathrm{Ca}^{2+}+2 \mathrm{PO}_{4}^{3-}$
x) $3 \mathrm{~K}^{+}+\mathrm{PO}_{4}{ }^{3-}$
y) $\mathrm{Mg}^{2+}+\mathrm{SiO}_{3}{ }^{2-}$
z) $\quad \mathrm{In}^{3+}+3 \mathrm{NO}_{3}{ }^{-}$
a) $\mathrm{Ca}^{2+}+2 \mathrm{MnO}_{3}^{-}$
B) $2 \mathrm{Na}^{+}+\mathrm{CrO}_{4}{ }^{2-}$

ג) $\mathrm{Sr}^{2+}+2 \mathrm{ClO}_{3}^{-}$
ع) $\mathrm{Cf}^{3+}+\mathrm{NO}_{3}$
ф) $2 \mathrm{Au}^{3+}+3 \mathrm{CO}_{3}{ }^{2-}$

ү) $3 \mathrm{NH}_{4}{ }^{+}+\mathrm{PO}_{4}{ }^{3-}$
a) Sodium chloride
b) Sodium oxide
c) Barium bromide
d) Aluminium hydroxide
e) Potassium sulphate
f) Calcium nitrate
g) Magnesium carbonate
h) Gallium carbonate
i) Lead(IV) sulphate
j) Copper(II) chloride
k) Iron (III) oxide
l) Magnesium nitrate
m) Calcium sulphate
n) Lithium carbonate
o) Ammonium chloride
p) Potassium nitrate
q) Ammonium nitrate
r) Ammonium hydroxide
s) Magnesium hydrogen carbonate
t) Sodium hydrogen carbonate
u) Ammonium sulphate
v) Iron(II) carbonate
w) Calcium phosphate
x) Potassium phosphate
y) Magnesium silicate
z) Indium nitrate
a) Calcium manganate
β) Sodium chromate
X) Strontium chlorate

ع) Californium(III) nitrate
ф) Gold (III) carbonate

ү) Ammonium phosphate

Question 4
a) Chlorine molecule
b) Chlorine atom
c) Chloride ion
d) Chlorine ion
e) Chlorate ion
f) Hydrogen chloride
g) Hydrochloric acid
h) Chloric acid

Question 5
i) Bromine molecule
j) Bromine atom
k) Bromide ion
l) Bromine ion
m) Bromate ion
n) Hydrogen bromide
o) Hydrobromic acid
p) Bromic acid

FORMULAE FROM NAMES OF IONIC COMPOUNDS (1)

Compound	+ve	$\begin{aligned} & \text {-ve } \\ & \text { ion } \\ & \hline \end{aligned}$	FORMULA	Compound	+ ve ion	-ve ion	FORMULA
Sodium chloride	Na^{+}	Cl^{-}	NaCl	Gallium hydrogencarbonate	Ga^{3+}	$3 \mathrm{HCO}_{3}{ }^{-}$	$\mathrm{Ga}\left(\mathrm{HCO}_{3}\right)_{3}$
Barium oxide	Ba^{2+}	O^{2-}	BaO	Ammonium hydrogencarbonate	$\mathrm{NH}_{4}{ }^{+}$	$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{NH}_{4} \mathrm{HCO}_{3}$
Magnesium chloride	$\mathbf{M g}^{\mathbf{2 +}}$	$2 \mathrm{Cl}^{-}$	$\mathbf{M g C l}{ }_{2}$	Potassium hydrogencarbonate	\mathbf{K}^{+}	$\mathrm{HCO}_{3}{ }^{-}$	KHCO_{3}
Potassium oxide	$2 \mathrm{~K}^{+}$	O^{2-}	$\mathrm{K}_{2} \mathrm{O}$	Iron(II)hydrogencarbonate	Fe^{2+}	$2 \mathrm{HCO}_{3}{ }^{-}$	$\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}$
Copper(I) oxide	$2 \mathrm{Cu}^{+}$	O^{2-}	$\mathrm{Cu}_{2} \mathrm{O}$	Bismuth(V)hydroxide	$B i^{5+}$	$5 \mathrm{HH}^{-}$	$\mathrm{Bi}(\mathrm{OH})_{5}$
Aluminium Bromide	Al^{3+}	$3 \mathrm{Br}^{-}$	AlBr_{3}	Gold(III)oxide	$2 \mathrm{Au}^{3+}$	30^{2-}	$\mathrm{Au}_{2} \mathrm{O}_{3}$
Lead(IV)fluoride	Pb^{4+}	4F-	PbF_{4}	Aluminium sulphate	$2 \mathrm{Al}^{3+}$	$3 \mathrm{SO}_{4}{ }^{2-}$	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
Tin(IV)oxide	Sn ${ }^{4+}$	20^{2-}	SbO_{2}	Silver carbonate	$2 \mathrm{Ag}^{+}$	$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$
Aluminium oxide	$2 \mathrm{Al}^{3+}$	30^{2-}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	Chromium(IV)oxide	Cr^{4+}	20^{2-}	CrO_{2}
Bismuth(V)bromide	$\mathrm{Bi}^{\text {5+ }}$	$5 \mathrm{Br}^{-}$	BiBr_{5}	Strontium nitrate	Sr^{2+}	$2 \mathrm{NO}_{3}{ }^{-}$	$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$
Vanadium(V)oxide	$2 V^{5+}$	50^{2-}	$\mathrm{V}_{2} \mathrm{O}_{5}$	Potassium phosphate	$3 \mathrm{~K}^{+}$	$\mathrm{PO}_{4}{ }^{3-}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$
Polonium(VI)iodide	Po ${ }^{6+}$	61^{-}	PoI_{6}	Tin (II) nitrate	Sn ${ }^{2+}$	$2 \mathrm{NO}_{3}{ }^{-}$	$\mathrm{Sn}\left(\mathrm{NO}_{3}\right)_{2}$
Polonium(VI)oxide	Po ${ }^{6+}$	30^{2-}	PoO_{3}	Ammonium sulphate	$\mathbf{2} \mathrm{NH}_{4}^{+}$	$\mathrm{SO}_{4}{ }^{\mathbf{2 +}}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
Sodium sulphide	$\mathbf{2 N a}{ }^{+}$	S^{2-}	$\mathrm{Na}_{2} \mathrm{~S}$	Calcium silicate (guess) Silicon in same $G p$ as C	Ca^{2+}	$\mathrm{SiO}_{3}{ }^{\text {2- }}$	CaSiO_{3}
Sodium sulphate	Na^{+}	$\mathrm{SO}_{4}{ }^{\mathbf{2 -}}$	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	Titanium(IV) sulphate	Ti^{4+}	$\mathbf{2 S O}{ }_{4}{ }^{\mathbf{2 -}}$	$\mathrm{Ti}\left(\mathrm{SO}_{4}\right)_{2}$
lithium sulphide	Li ${ }^{+}$	S^{2-}	$\mathrm{Li}_{2} \mathrm{~S}$	Ammonium carbonate	$\mathrm{NH}_{4}{ }^{+}$	$\mathrm{CO}_{3}{ }^{2-}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
Magnesium hydroxide	$\mathbf{M g}^{\mathbf{2 +}}$	OH^{-}	$\mathrm{Mg}(\mathrm{OH})_{2}$	Bismuth(V) Hydrogencarbonate	$B i^{5+}$	$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{Bi}\left(\mathrm{HCO}_{3}\right)_{5}$
Ammonium hydroxide	$\mathrm{NH}_{4}{ }^{+}$	OH^{-}	$\mathrm{NH}_{4} \mathrm{OH}$	thallium sulfide	$2 \mathrm{Tl}^{3+}$	35^{2-}	$\mathrm{Tl}_{2} \mathrm{~S}_{3}$
Lithium hydroxide	Li^{+}	OH^{-}	LiOH	silver iodide	Ag^{+}	I^{-}	Agl
Thallium(III)hydroxide	T ${ }^{3+}$	$3 \mathrm{OH}^{-}$	$\mathrm{Tl}(\mathrm{OH})_{3}$	Iron(III)oxide	$2 \mathrm{Fe}^{3+}$	30^{2-}	$\mathrm{Fe}_{2} \mathrm{O}_{3}$
magnesium nitride	$\mathrm{Mg}^{\mathbf{2 +}}$	$2 N^{3-}$	$\mathrm{Mg}_{3} \mathrm{~N}_{2}$	calcium fluoride	Ca^{2+}	$2 \mathrm{~F}^{-}$	CaF_{2}
calcium nitrate	Ca^{2+}	$2 \mathrm{NO}_{3}{ }^{-}$	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	zinc sulphate	Zn^{2+}	$\mathrm{SO}_{4}{ }^{\mathbf{2 -}}$	ZnSO_{4}
Barium nitrate	Ba^{2+}	$\mathbf{2 N O}{ }^{-}$	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	Bismuth(III) astatide	Bi^{3+}	3At ${ }^{-}$	BiAt_{3}
Lithium phosphide	$3 \mathrm{Li}^{+}$	P^{3-}	$L i S_{3} \mathrm{P}$	tin(II)nitrate	Sn^{2+}	$2 \mathrm{NO}_{3}{ }^{-}$	$\mathrm{Sn}\left(\mathrm{NO}_{3}\right)_{2}$
Ammonium phosphate	$\mathbf{3 N H}{ }_{4}^{+}$	$\mathrm{PO}_{4}{ }^{\text {3- }}$	$\left(\mathrm{NH}_{4}\right){ }_{3} \mathrm{PO}_{4}$	Antimony(V) selenide	$\mathbf{2 S b}{ }^{5+}$	$5 \mathrm{Se}^{2-}$	$\mathrm{Sb}_{2} \mathrm{Se}_{5}$
Aluminium phosphate	Al^{3+}	$\mathrm{PO}_{4}{ }^{3-}$	AlPO_{4}	Rubidium nitride	3Rb ${ }^{+}$	N^{3-}	$\mathrm{Rb}_{3} \mathrm{~N}$
Sodium carbonate	$\mathbf{2 N a}{ }^{+}$	$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	potassium sulphate	$2 \mathrm{~K}^{+}$	$\mathrm{SO}_{4}{ }^{\mathbf{2 -}}$	$\mathrm{K}_{2} \mathrm{SO}_{4}$
Calcium carbide	$2 \mathrm{Ca}^{2+}$	C^{4-}	$\mathrm{Ca}_{2} \mathrm{C}$	sodium ethanoate	Na^{+}	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	$\mathrm{CH}_{3} \mathrm{COONa}$
Strontium carbonate	Sr^{2+}	$\mathrm{CO}_{3}{ }^{2-}$	SrCO_{3}	Zirconium(IV) selenate Se in same group as S	Zr^{4+}	$\mathbf{2 S e O}{ }_{4}{ }^{\mathbf{2 -}}$	$\mathrm{Zr}\left(\mathrm{SeO}_{4}\right)_{2}$

IONIC FORMULAE 2

Compound	+ve	$\begin{aligned} & \hline \text {-ve } \\ & \text { ion } \end{aligned}$	FORMULA	Compound	$\begin{aligned} & \text { +ve } \\ & \text { ion } \end{aligned}$	$\begin{aligned} & \hline \text {-ve } \\ & \text { ion } \end{aligned}$	FORMULA
Barium sulphate	Ba^{2+}	$\mathrm{SO}_{4}{ }^{\text {- }}$	BaSO_{4}	Gallium hydrogencarbonate	Ga^{3+}	$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{Ga}\left(\mathrm{HCO}_{3}\right)_{3}$
Sodium carbonate	Na^{+}	$\mathrm{CO}_{3}{ }^{\text {- }}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	Sodium oxide	Na^{+}	O^{2-}	$\mathrm{Na}_{2} \mathrm{O}$
caesium sulphide	Cs^{+}	s^{2-}	$\mathrm{Cs}_{2} \mathrm{~S}$	Lithium sulphate	Li^{+}	$\mathrm{SO}_{4}{ }^{\text {2- }}$	$\mathrm{Li}_{2} \mathrm{SO}_{4}$
Ammonium sulphate	NH_{4}^{+}	$\mathrm{SO}_{4}{ }^{2-}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	Calcium lodide	Ca^{2+}	$1{ }^{-}$	CaI_{2}
Copper(I) oxide	Cu^{+}	O^{2-}	$\mathrm{Cu}_{2} \mathrm{O}$	strontium hydroxide	Sr^{2+}	OH^{-}	$\mathrm{Sr}(\mathrm{OH})_{2}$
Lithium hydrogencarbonate	Li^{+}	$\mathrm{HCO}_{3}{ }^{-}$	LiHCO_{3}	Indium oxide	$\mathrm{In}^{\mathbf{3 +}}$	O^{2-}	$\mathrm{In}_{2} \mathrm{O}_{3}$
Strontium hydroxide	Sr^{2+}	OH^{-}	$\mathrm{Sr}(\mathrm{OH})_{2}$	Platinum(II)chloride	$\mathrm{Pt}^{\text {2+ }}$	Cl^{-}	PtCl_{2}
Copper(II)carbonate	Cu^{2+}	$\mathrm{CO}_{3}{ }^{2-}$	CuCO_{3}	Potassium selenide	K^{+}	Se^{2-}	$\mathrm{K}_{2} \mathrm{Se}$
Zinc hydrogen carbonate	Zn^{2+}	$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{Zn}\left(\mathrm{HCO}_{3}\right)_{2}$	Rubidium sulphate	Rb^{+}	$\mathrm{SO}_{4}{ }^{2-}$	$\mathrm{Rb}_{2} \mathrm{SO}_{4}$
Aluminium nitrate	Al^{3+}	$\mathrm{NO}_{3}{ }^{-}$	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	Calcium carbonate	Ca^{2+}	$\mathrm{CO}_{3}{ }^{\text {2- }}$	CaCO_{3}
Ammonium carbonate	NH_{4}^{+}	$\mathrm{CO}_{3}{ }^{\text {2- }}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	Gallium nitride	Ga^{3+}	N^{3-}	GaN
Silver carbonate	Ag^{+}	$\mathrm{CO}_{3}{ }^{\text {- }}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	Aluminium hydroxide	$\mathrm{Al}^{\text {3+ }}$	OH^{-}	$\mathrm{Al}(\mathrm{OH})_{3}$
Barium nitrate	Ba^{2+}	$\mathrm{NO}_{3}{ }^{-}$	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	Gold nitrate	Au^{+}	$\mathrm{NO}_{3}{ }^{-}$	AuNO_{3}
Aluminium fluoride	Al^{3+}	F-	AlF_{3}	Calcium silicate (guess)	Ca^{2+}	$\mathrm{SiO}_{4}{ }^{-}$	$\mathrm{Ca}\left(\mathrm{SiO}_{4}\right)_{2}$
Potassium sulphate	K^{+}	$\mathrm{SO}_{4}{ }^{\text {- }}$	$\mathrm{K}_{2} \mathrm{SO}_{4}$	Titanium(IV) oxide	$\mathrm{Ti}^{\text {4+ }}$	O^{2-}	TiO_{2}
Francium astatide	Fr ${ }^{+}$	At ${ }^{\text {º}}$	FrAt	Ammonium nitride	NH_{4}^{+}	N^{3-}	$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{~N}$
Magnesium hydroxide	$\mathrm{Mg}^{\mathbf{2 +}}$	OH^{-}	$\mathrm{Mg}(\mathrm{OH})_{2}$	Bismuth(V) oxide	$\mathrm{Bi}^{\text {5+ }}$	0^{2-}	$\mathrm{Bi}_{2} \mathrm{O}_{5}$
Ammonium bromide	NH_{4}^{+}	Br^{-}	$\mathrm{NH}_{4} \mathrm{Br}$	Gallium telluride	Ga^{3+}	Te ${ }^{2-}$	$\mathrm{Ga}_{2} \mathrm{Te}_{3}$
Indium carbonate	$\mathbf{I n}^{3+}$	$\mathrm{CO}_{3}{ }^{\text {2- }}$	$\mathrm{In}_{2}\left(\mathrm{CO}_{3}\right)_{3}$	Copper(II)hydroxide	Cu^{2+}	OH^{-}	$\mathrm{Cu}(\mathrm{OH})_{2}$
Magnesium hydroxide	Mg ${ }^{2+}$	OH^{-}	$\mathrm{Mg}(\mathrm{OH})_{2}$	Iron(III) hydrogencarbonate	Fe^{3+}	$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{3}$
Silver sulphate	Ag^{+}	$\mathrm{SO}_{4}{ }^{2-}$	$\mathrm{Ag}_{2} \mathrm{SO}_{4}$	Lithium phosphide	Li^{+}	P^{3-}	$L_{3} \mathrm{P}$
Nickel(II) Chloride	Ni^{2+}	Cl'	NiCl_{2}	Cadmium Nitride	Cd^{2+}	N^{3-}	$\mathrm{Cd}_{3} \mathrm{~N}_{2}$

1. If you take the O as -2 , then the Roman numerals represent as assigned charge of the other element. In compound ions the individual element are not preent as ions, oxidation numbers are used to represent the formal charge, to distinguish oxidation numbers form ions the + or - must be before the number $\mathrm{eg} \mathrm{SO}_{4}{ }^{2-}: \mathrm{S}=+6$, each $\mathrm{O}=-2$, $+6+(4 x-2)=$ charge on the compound ion
a $\mathrm{NH}_{4} \mathrm{ClO}_{3}$ b. $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{c} . \mathrm{Sn}_{3}\left(\mathrm{PO}_{3}\right)_{4}$ d. PoSO_{4}
e. $\mathrm{Sb}(\mathrm{BrO})_{3}$ f. $\mathrm{Ru}\left(\mathrm{ClO}_{3}\right)_{3}$ g. $\mathrm{Ir}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ h. $\mathrm{Bi} 2\left(\mathrm{TeO}_{3}\right)_{3} \mathrm{i} . \mathrm{Ga}\left(\mathrm{IO}_{3}\right)_{3}$

FORMULAE OF COVALENT MOLECULES: Give the formula of the following (these have to be remembered)

Name	Formula	Name	Formula	Name	Formula
Water	$\mathrm{H}_{2} \mathrm{O}$	Methane	CH_{4}	Ethanoic acid	$\mathrm{CH}_{3} \mathrm{COOH}$
Ammonia	NH_{3}	Ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$
Glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$			Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$

(2) Formula which can be worked out just from the name and knowing number of atoms from the prefixes.

di $=2$	penta $=5$	$\begin{aligned} & \operatorname{mon}(0)= \\ & 1 \end{aligned}$		tetra $=$		tri= 3		hexa $=$		deca	$=10$	octa	= 8
and the valency / oxidation number :group 1 2			give the common valency(s) for the groups										
				3		4		5	6		7		8
Valency(s)	1	2	3		4		3		2		1		0

Compound	$\mathrm{l}^{\text {st }}$	$\begin{aligned} & \mathbf{2}^{\text {nd }} \end{aligned}$	FORMULA	Compound	FORMULA	$\overline{1^{\text {st }}}$	$\begin{array}{\|l\|l} \mathbf{v} \\ 2^{n} \end{array}$	Does the valency agree with the formula?
Hydrogen fluoride	1	1	HF	Carbon dioxide	CO_{2}	4	2	Yes
Selenium bromide	2	1	SeBr_{2}	Phosphorus pentachloride	PCl_{5}	3	1	NO
Tellurium astatide	3	1	TlAt_{3}	Nitrogen trichloride	NCl_{3}	3	1	Yes
Hydrogen sulphide	1	2	$\mathrm{H}_{2} \mathrm{~S}$	Selenium dichloride	SeCl_{2}	2	1	Yes
Boron oxide	3	2	$\mathrm{B}_{2} \mathrm{O}_{3}$	Carbon disulphide	CS_{2}	4	2	Yes
Boron hydride	3	1	BH_{3}	Arsenic trioxide	AsO_{3}	3	2	No
Hydrogen telluride	1	2	TeH2	Oxygen difluoride	OF_{2}	2	1	Yes
Boron nitride	2	3	$\mathrm{B}_{3} \mathrm{~N}_{2}$	Diphosphorus pentoxide	$\mathrm{P}_{2} \mathrm{O}_{5}$	3	2	No
Germanium hydride	4	1	GeH_{4}	Sulphur dioxide	SO_{2}	2	2	No
Germanium(IV) oxide	4	2	GeO_{2}	Diantimony pentasulfide	$\mathrm{Sb}_{2} \mathrm{~S}_{5}$	3	2	No
Phosphorus(III) oxide	3	2	$\mathrm{P}_{2} \mathrm{O}_{3}$	Nitrogen monoxide	NO	3	2	No
Antimony(III) oxide	3	2	$\mathrm{Sb}_{2} \mathrm{O}_{3}$	Disulphur dibromide	$\mathrm{S}_{2} \mathrm{Br}_{2}$	2	1	No
Silicon(IV) oxide	4	2	SiO_{2}	Dinitrogen tetroxide	$\mathrm{N}_{2} \mathrm{O}_{3}$	3	2	Yes
Arsenic(V) sulphide	3	2	$\mathrm{As}_{2} \mathrm{~S}_{3}$	Sulphur trioxide	SO_{3}	2	2	No
Nitrogen(I) oxide	1	2	$\mathrm{N}_{2} \mathrm{O}$	Tetraphosphorus decaoxide	$\mathrm{P}_{4} \mathrm{O}_{10}$	3	2	No
Selenium(VI) oxide	6	2	${ }_{3} \mathrm{SeO}_{3}$	Xenon tetroxide	XeO_{4}	0	2	No

EXTENSION: By doing the Extension Question on page 3 you may be able to work out the formulae of the following
a) Phosphoric(V)acid $\mathrm{H}_{3} \mathrm{PO}_{4}$
b) Phosphoric(III)acid $\mathrm{H}_{3} \mathrm{PO}_{3}$
e) selenic(IV)acid $\mathrm{H}_{2} \mathrm{SeO}_{3}$
c) Chloric(I)acid HClO
d) \quad Chloric(V) acid HClO_{3}
k) Astatic(VII) acid HAtO_{3}
f) $\mathrm{Bromate}\left(\mathrm{V}\right.$) acid HBrO_{3}
j) nitric(III) acid HNO_{3}
I) Chromic(VI)acid $\mathrm{H}_{2} \mathrm{CrO}_{4}$

Section A: Checking basics needed for balanced symbol equations, sheet 1

1. Give the formulae of the following

SCORE /15

hydroxide ion	OH^{-}	carbonate ion	$\mathrm{CO}_{3}{ }^{2-}$	nitric acid	HNO_{3}
sulphate ion	$\mathrm{SO}_{4}{ }^{2-}$	Nitrate ion	NO_{3}^{-}	Oxide ion	O^{2-}
Chloride ion	Cl^{-}	sulphuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	Zinc ion	Zn^{2+}
ammonium ion	NH_{4}^{+}	Iron(III) ion	Fe^{3+}	hydrochloric acid	HCl
Sulphide ion	S^{2-}	Ammonia	NH_{3}	Silver ion	Ag^{+}

2. State whether the following are I (contain ions) C (covalent) M (metallic) Score $/ 3$ (all I $=1$, all $C=1$, all M = 1)

$\mathrm{Mg}(\mathrm{s})$	$\mathrm{NaCl}(\mathrm{s})$	$\mathrm{CO}_{2}(\mathrm{~g})$	$\mathrm{Cl}(\mathrm{g})$	$\mathrm{HCl}(\mathrm{g})$	$\mathrm{MgCl}_{2}(\mathrm{~s})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
M	I	C	C	C	I	C
$\mathrm{Br}_{2}(\mathrm{aq})$	$\mathrm{NaCl}(\mathrm{aq})$	$\mathrm{CO}_{2}(\mathrm{aq})$	$\mathrm{Cl}_{2}(\mathrm{aq})$	$\mathrm{HCl}(\mathrm{aq})$	$\mathrm{MgCl}_{2}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
C	1	C	1	I^{*}	l	I^{*}

*Acids form ions when dissolved in water
3. Use of HFBrONICIAt, for the equations below (i) Write above the equation whether the substance is I, C or M , (ii) Then CIRCLE all the formulae that you need to use HFBrONICIAt with
M
C
I
a) Galcium + oxygen \rightarrow Ealcium oxide
M
C
I
$\underset{\text { c) }}{\substack{\text { hydrogen }} \underset{\text { oxygen }}{\text { C }} \rightarrow \underset{\text { water }}{\text { C }} \text { C }}$

b) Sodium + sulphur \rightarrow sodium sulphide
f) $\underset{\text { Aluminium bromide(aq) }}{\text { I }}+\frac{\mathbf{C}}{\text { nitrogen }} \rightarrow$ aluminum nitride $+\frac{\mathbf{C}}{\text { I }}$
I
I
I
C $\quad \mathrm{M}$
I
d) Todine(aq) + calcium \rightarrow calcium iodide
e) Magnesium + hydrochloric acid(aq) \rightarrow magnesium chloride hydrogen

h) $\frac{\text { Chlorine }}{\text { C hydrogen }} \rightarrow \underset{\text { hydrogen chloride }}{\text { C }}$

M
C
I
j) Silver $\xrightarrow{\text { chlorine }} \rightarrow$ silver chloride

Section A: Checking basics needed for writing balanced symbol equations, sheet 2

DATE:

1. Give the formulae of the following

SCORE /21

Chloride ion	Cl^{-}	Ammonia	NH_{3}	nitric acid	HNO_{3}
sulphate ion	$\mathrm{SO}_{4}{ }^{2-}$	Sulphide ion	S^{2-}	Silver ion	Ag^{+}
sulphuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	Zinc ion	Zn^{2+}	ammonium ion	NH_{4}^{+}
Nitrate ion	NO_{3}^{-}	ethanoate ion	$\mathrm{CH}_{3} \mathrm{COOH}$	hydrochloric acid	HCl
carbonate ion	$\mathrm{CO}_{3}{ }^{2-}$	ethanoic acid	$\mathrm{CH}_{3} \mathrm{COO}$	hydroxide ion	OH^{-}
Iron(III) ion	Fe^{3+}	Strontium ion	S^{2-}	Nitride ion	N^{3-}
Selenide ion	Se^{2-}	Iodide ion	I^{-}	Phosphide ion	P^{3-}

I/C or	Name	If C or M	if Ionic, work out ions then number of each needed				
M?		formula	no	+ve ion	no	- ve ion	formula
I	Sodium oxide	----	2	Na^{+}	1	O^{2-}	$\mathrm{Na}_{2} \mathrm{O}$
C	oxygen	O_{2}	--	--	--	--	--
M	sodium	Na	--	--	--	--	--
I	Calcium hydroxide	--	1	Ca^{2+}	2	OH^{-}	$\mathrm{Ca}(\mathrm{OH})_{2}$
C	Carbon dioxide	CO_{2}	--	--	--	--	--
I	Magnesium oxide	--	1	$\mathbf{M g}{ }^{\mathbf{2 +}}$	1	O^{2-}	MgO
I	Iron(III) chloride	--	1	Fe^{3+}	3	Cl^{-}	FeCl_{3}
C	Chlorine	Cl_{2}	--	--	--	--	--
I	Barium chloride	--	1	Ba^{2+}	2	Cl^{-}	BaCl_{2}
I	Calcium carbonate	--	1	Ca^{2+}	1	$\mathrm{CO}_{3}{ }^{\text {2- }}$	CaCO_{3}
I	Sodium carbonate	--	2	Na^{+}	1	$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$
I	Aluminum carbonate	--	2	Al^{3+}	3	$\mathrm{CO}_{3}{ }^{\text {- }}$	$\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
I	silver sulphate	--	2	$\mathbf{A g}^{+}$	1	$\mathrm{SO}_{4}{ }^{\text {2- }}$	$\mathrm{Ag}_{2} \mathrm{SO}_{4}$
M	Iron	Fe	--	--	--	--	--
I	Lead(IV) nitrate	--	1	Pb^{4+}	4	$\mathrm{NO}_{3}{ }^{-}$	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{4}$
I	Lead(IV) nitride	--	3	Pb^{4+}	4	N^{3-}	$\mathrm{Pb}_{3} \mathrm{~N}_{4}$

Section A: Checking basics needed for writing balanced symbol equations, SEE PAGE 1 of notes for worked example

M	C		$\mathrm{I}: \mathrm{Al}^{3+}+3 \mathrm{Cl}^{-}$		
Aluminium	+ chlorine* *	\rightarrow	Aluminium chloride		
$\mathbf{A I}$	$\mathbf{1 . 5 C l _ { 2 }}$		AlCl_{3}		

3.	$\mathrm{I}: \mathbf{2} \mathrm{Na}^{+}+1 \mathrm{CO}_{3}{ }^{\text {- }}$		I: $2 \mathrm{Na}^{+}+1 \mathrm{O}^{\mathbf{2 -}}$	C	
	sodium carbonate	\rightarrow	Sodium oxide	+ carbon dioxide	
	$\mathrm{Na}_{2} \mathrm{CO}_{3}$		$\mathrm{Na}_{2} \mathrm{O}$	CO_{2}	

4. \mathbf{M}	$(\mathbf{I}(\mathrm{aq}))$		$\mathbf{I}: \mathbf{1} \mathbf{M g}^{\mathbf{2 +}}+\mathbf{2 C l}$	\mathbf{C}	
Magnesium	+ hydrochloric acid	\rightarrow	Magnesium chloride	+ hydrogen*	
$\mathbf{M g}$	$\mathbf{2 H C l}$		$\mathbf{M g C l}_{\mathbf{2}}$	$\mathbf{H}_{\mathbf{2}}$	

5. I: $\mathbf{1 \mathrm { Na } ^ { + } + \mathbf { 1 } \mathrm { OH } ^ { - }}$	(I (aq))		$\mathbf{I}: \mathbf{1} \mathrm{Na}^{+}+\mathbf{1} \mathbf{N O}_{\mathbf{3}}{ }^{-}$	\mathbf{C}	
Sodium hydroxide	+ nitric acid	\rightarrow	Sodium nitrate	+ water	
NaOH	HNO_{3}		NaNO_{3}	$\mathbf{H}_{2} \mathbf{O}$	

6. I: $1 \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$	$(\mathrm{I}(\mathrm{aq}))$		$\mathbf{1}: \mathbf{1 ~ C a}^{2+}+2 \mathrm{NO}_{3}^{-}$	\mathbf{C}	
Calcium hydroxide	+ nitric acid	\rightarrow	Calcium nitrate	+ water	
$\mathrm{Ca}(\mathbf{O H})_{2}$	$2 \mathrm{HNO}_{3}$		$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	$\mathrm{H}_{2} \mathrm{O}$	

7. I: $1 \mathrm{Al}^{3+}+3 \mathrm{OH}^{-}$	((aq) $)$		I: $1 \mathrm{Al}^{3+}+3 \mathrm{NO}_{3}{ }^{-}$	C	
Aluminium hydroxide	+ nitric acid	\rightarrow	Aluminium nitrate	+ water	
$\mathrm{Al}(\mathrm{OH})_{3}$	$3 \mathrm{HNO}_{3}$		$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	$3 \mathrm{H}_{2} \mathrm{O}$	
8. $\mathrm{I}: 1 \mathrm{~Pb}^{4+}+4 \mathrm{OH}^{-}$	((aq)		$\mathrm{I}: 1 \mathrm{~Pb}^{4+}+4 \mathrm{NO}_{3}{ }^{-}$	C	
Lead(IV) hydroxide	+ nitric acid	\rightarrow	Lead(IV) nitrate	+ water	
$\mathrm{Pb}(\mathrm{OH})_{4}$	$4 \mathrm{HNO}_{3}$		$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{4}$	$4 \mathrm{H}_{2} \mathrm{O}$	

9. I: $1 \mathrm{~K}^{+}+1 \mathrm{OH}^{-}$	(I (aq))		$\mathrm{I}: 2 \mathrm{~K} \mathrm{~K}^{+}+1 \mathrm{SO}_{4}{ }^{\text {2- }}$	C	
potassium hydroxide	+ sulphuric acid	\rightarrow	potassium sulphate	+ water	
2KOH	$\mathrm{H}_{2} \mathrm{SO}_{4}$		$\mathrm{K}_{2} \mathrm{SO}_{4}$	$2 \mathrm{H}_{2} \mathrm{O}$	

10. : $\mathbf{1} \mathrm{Ga}^{3+}+\mathbf{3} \mathrm{Br}^{-}$	\mathbf{C}		$: \mathbf{2} \mathrm{Ga}^{3+}+\mathbf{3 0 ^ { 2 - }}$	\mathbf{C}	
Gallium bromide	+ oxygen*	\rightarrow	Gallium oxide	+ bromine*	
$2 \mathrm{GaBr}_{3}$	$\mathbf{1 . 5 \mathrm { O } _ { 2 }}$		$\mathrm{Ga}_{2} \mathrm{O}_{3}$	$3 \mathrm{Br}_{2}$	

* diatomic...

Reaction of Acids 1 (a) Complete the word equation CHECK YOUR ANSWERS and then (b) Write balanced symbol equations

1. Magnesium + hydrochloric acid \rightarrow Magnesium chloride + Hyd
$\mathrm{Mg}+2 \mathrm{HCl} \rightarrow+\mathrm{MgCl}_{2}+\mathrm{H}_{2}$
2. Calcium oxide + sulphuric acid \rightarrow Calcium sulphate + Water
$\mathrm{CaO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4} \quad+\mathrm{H}_{2} \mathrm{O}$
3. sodium hydroxide + nitric acid \rightarrow Sodium nitrate + Water
$\mathrm{NaOH} \quad+\mathrm{HNO}_{3} \rightarrow \quad \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
4. Magnesium carbonate + hydrochloric acid \rightarrow Magnesium chloride + carbon dioxide + water

$$
\mathrm{MgCO}_{3}+2 \mathrm{HCl} \quad \rightarrow \quad \mathrm{MgCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

5. sodium hydrogencarbonate + sulphuric acid \rightarrow Sodium sulphate + carbon dioxide + water
$2 \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
6. silver oxide + hydrochloric acid \rightarrow Silver chloride + water
$\mathrm{Ag}_{2} \mathrm{O}+2 \mathrm{HCl} \rightarrow 2 \mathrm{AgCl}+\mathrm{H}_{2} \mathrm{O}$
7. Lithium + sulphuric acid \rightarrow Lithium sulphate + hydrogen
$2 \mathrm{Li}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Li}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2}$
8. Calcium hydroxide + nitric acid \rightarrow Calcium nitrate + water
$\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
9. potassium carbonate + hydrochloric acid \rightarrow potassium chloride + carbon dioxide + water
$\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \quad \rightarrow \quad 2 \mathrm{KCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
10. Barium hydrogencarbonate + nitric acid \rightarrow Barium nitrate + carbon dioxide + water
$\mathrm{Ba}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
11. sulphuric acid + barium oxide \rightarrow barium sulphate + water
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{BaO} \quad \rightarrow \quad \mathrm{BaSO}_{4} \quad+\mathrm{H}_{2} \mathrm{O}$
12. Gallium hydroxide + ethanoic acid \rightarrow Gallium ethanoate + water
$\mathrm{Ga}(\mathrm{OH})_{3}+3 \mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{Ga}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}$

Reaction of Acids 2 (a) Complete the word equation CHECK YOUR ANSWERS and then (b) Write balanced symbol equations

1a. Aluminum oxide + sulfuric acid \rightarrow Aluminum sulphate + water
$\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}$

1b. Aluminum hydroxide + sulfuric acid \rightarrow Aluminum sulphate + water
$\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}$

2a. Lead(IV) carbonate + nitric acid \rightarrow lead(IV)nitrate + carbon dioxide + water
$\mathrm{Pb}\left(\mathrm{CO}_{3}\right)_{2}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{4}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

2b. Lead(IV) hydrogencarbonate + nitric acid \rightarrow lead(IV)nitrate + carbon dioxide + water
$\mathrm{Pb}\left(\mathrm{HCO}_{3}\right)_{4}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{4}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
3. Hydrochloric acid + magnesium \rightarrow magnesium chloride + hydrogen
$\mathrm{HCl}+\mathrm{Mg} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
4. Ammonium hydroxide + sulphuric acid \rightarrow ammonium sulphate + water
$2 \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
5. Ammonia + nitric acid \rightarrow ammonium nitrate

$$
\mathrm{NH}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}
$$

6. copper(II) hydroxide + hydrobromic acid \rightarrow copper(II) bromide + water
$\mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{HBr} \rightarrow \mathrm{CuBr}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
7. calcium hydrogencarbonate + phosphoric acid \rightarrow calcium phosphate + carbon dioxide + water
$3 \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
8. Vandium(V)oxide + hydroiodic acid \rightarrow vanadium(V)iodide + water
$\mathrm{V}_{2} \mathrm{O}_{5}+10 \mathrm{HI} \rightarrow 2 \mathrm{VI}_{5}+5 \mathrm{H}_{2} \mathrm{O}$
9. ammonia + hydrochloric acid \rightarrow ammonium chloride
$\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$
10. strontium + nitric acid \rightarrow strontium nitrate + hydrogen
$\mathrm{Sr}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2}$

Reaction of Acids 3 (a) Complete the word equation CHECK YOUR ANSWERS and then (b) Write balanced symbol equations

1. Tin(II) hydroxide + hydrochloric acid \rightarrow Tin chloride + Water
$\mathrm{Sn}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{SnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
2. Bismuth $(\mathrm{V})+$ nitric acid \rightarrow Bismuth nitrate + Hydrogen
$\mathrm{Bi}+5 \mathrm{HNO}_{3} \rightarrow \mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{5}+2.5 \mathrm{H}_{2}$
3. Iron(III)carbonate + sulphuric acid \rightarrow iron (III) sulfate + water + carbon dioxide
$\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
4. $\mathrm{ammonium} \mathrm{hydrogencarbonate}+$ ethanoic acid \rightarrow ammonium ethanoate + water + carbon dioxide $^{\mathrm{NH}_{4} \mathrm{HCO}_{3}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONH}} 44+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

5. Copper(II)oxide + nitric acid \rightarrow Copper (II) nitrate + water
$\mathrm{CuO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
6. silver carbonate + phosphoric acid \rightarrow silver phosphate + water + carbon dioxide
$3 \mathrm{Ag}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 2 \mathrm{Ag}_{3} \mathrm{PO}_{4}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
7. ammonia + sulfuric acid \rightarrow ammonium sulfate
$2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
8. Calcium hydroxide + sulphuric acid \rightarrow calcium sulphate + water
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
9. Caesium carbonate + hydroiodic acid \rightarrow Caesium iodate + carbon dioxide + water
$\mathrm{Cs}_{2} \mathrm{CO}_{3}+2 \mathrm{HI} \rightarrow 2 \mathrm{CsI}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
10. Polonium(VI) hydrogencarbonate + ethanoic acid \rightarrow Polonium (VI) ethanoate + carbon dioxide + water
$\mathrm{Po}\left(\mathrm{HCO}_{3}\right)_{6}+6 \mathrm{CH}_{3} \mathrm{COOH} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6} \mathrm{Po}+6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
11. sulphuric acid + Antimony (V) $\quad \rightarrow$ Antimony(V)sulphate + hydrogen
$5 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{Sb} \rightarrow \mathrm{Sb}_{2}\left(\mathrm{SO}_{4}\right)_{5}+5 \mathrm{H}_{2}$
12. Thallium hydroxide + Chloric acid \rightarrow Thallium Chlorate + water
$\mathrm{Tl}(\mathrm{OH})_{3}+3 \mathrm{HClO}_{3} \rightarrow \mathrm{TI}\left(\mathrm{ClO}_{3}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}$
13. Indium carbonate + nitric acid \rightarrow Indium nitrate + carbon dioxide + water
$\mathrm{In}_{2}\left(\mathrm{CO}_{3}\right)_{3}+6 \mathrm{HNO}_{3} \rightarrow 2 \ln \left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
14. Rubidium oxide + hydrochloric acid \rightarrow Rubidium chloride + water
$\mathrm{Rb}_{2} \mathrm{O}+2 \mathrm{HCl} \rightarrow 2 \mathrm{RbCl}+\mathrm{H}_{2} \mathrm{O}$
15. Ammonia + phosphoric acid \rightarrow ammonium phosphate
$3 \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
16. titanium + sulfuric acid \rightarrow titanium(IV) sulfate + hydrogen
$\mathrm{Ti}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Ti}\left(\mathrm{SO}_{4}\right)_{2}+2 \mathrm{H}_{2}$
17. silver oxide + phosphoric acid \rightarrow silver phosphate + water
$3 \mathrm{Ag}_{2} \mathrm{O}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 2 \mathrm{Ag}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$
18. Aluminium + hydrobromic acid \rightarrow Aluminium bromide + hydrogen
$2 \mathrm{Al}+6 \mathrm{HBr} \rightarrow 2 \mathrm{AlBr}_{3}+3 \mathrm{H}_{2}$
19. Gallium hydrogencarbonate + nitric acid \rightarrow gallium nitrate + carbon dioxide + wate
$\mathrm{Ga}\left(\mathrm{HCO}_{3}\right)_{3}+3 \mathrm{HNO}_{3} \rightarrow \mathrm{Ga}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
20. Antimony(V)oxide + nitric acid \rightarrow antimony (v) nitrate + water
$\mathrm{Sb}_{2} \mathrm{O}_{5}+10 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{Sb}\left(\mathrm{NO}_{3}\right)_{5}+5 \mathrm{H}_{2} \mathrm{O}$
21. ammonia + phosphoric acid \rightarrow ammonium phosphate
$3 \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
22. Lead(IV) oxide + bromic acid \rightarrow Lead(IV) bromate + water
$\mathrm{PbO}_{2}+4 \mathrm{HBrO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{BrO}_{3}\right)_{4}+2 \mathrm{H}_{2} \mathrm{O}$
23. Antimony(III) + Sulfuric acid \rightarrow Antimony(III) sulphate + hydrogen
$2 \mathrm{Sb}+3 \mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{Sb}_{2}\left(\mathrm{SO}_{3}\right)_{3}+3 \mathrm{H}_{2}$
24. Polonium(VI) carbonate + selenic acid \rightarrow Polonium(VI) selenate + carbon dioxide + water $\mathrm{Po}\left(\mathrm{CO}_{3}\right)_{3}+3 \mathrm{H}_{2} \mathrm{SeO}_{4} \rightarrow \mathrm{Po}\left(\mathrm{SeO}_{4}\right)_{3}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Reaction of Acids 4

SECTION A

$1 \mathrm{Ca}+0.5 \mathrm{O}_{2} \rightarrow \mathrm{CaO}$
$2 \mathrm{Na}+\mathrm{S} \rightarrow \mathrm{NaS}$
$3 \mathrm{H}_{2}+0.5 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
$4 \quad \mathrm{I}_{2}+\mathrm{Ca} \rightarrow \mathrm{CaI}_{2}$
$5 \mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
$6 \mathrm{Al}+1.5 \mathrm{Br}_{2} \rightarrow \mathrm{AlBr}_{3}$
$7 \mathrm{SrCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SrSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$8 \mathrm{Cl}_{2}+\mathrm{H}_{2} \rightarrow 2 \mathrm{HCl}$
$9 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{CuNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$104 \mathrm{Ag}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Ag}_{2} \mathrm{O}$
$11 \mathrm{Sn}+\mathrm{O}_{2} \rightarrow \mathrm{SnO}_{2}$
$12 \mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+0.5 \mathrm{H}_{2}$
$13 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$14 \mathrm{Mg}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
$15 \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{BaO}+2 \mathrm{NO}_{2}+0.5 \mathrm{O}_{2}$

SECTION B

a $\mathrm{Cu}+0.5 \mathrm{O}_{2} \rightarrow \mathrm{CuO}$
b $2 \mathrm{Cu}+0.5 \mathrm{O}_{2} \rightarrow \mathrm{Cu}_{2} \mathrm{O}$
c $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{NO}$
d $\mathrm{NO}+0.5 \mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}$
e $\mathrm{CH}_{4}+1.5 \mathrm{O}_{2} \rightarrow \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}$
f $\mathrm{P}_{4}+3 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{6}$
g $\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}$
h $\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaO}+\mathrm{H}_{2} \mathrm{O}$
I $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{CaO}+\mathrm{NO}_{2}+1.5 \mathrm{O}_{2}$
j $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{CO}_{23}$
k $2 \mathrm{LiNO}_{3} \rightarrow \mathrm{Li}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+0.5 \mathrm{O}_{2}$

SECTION C

a) $\mathrm{Na}_{2} \mathrm{O}+2 \mathrm{~K} \rightarrow \mathrm{~K}_{2} \mathrm{O}+2 \mathrm{Na}$
b) $2 \mathrm{Li}+\mathrm{SrO} \rightarrow \mathrm{Li}_{2} \mathrm{O}+\mathrm{Sr}$
c) $\mathrm{ZnO}+\mathrm{CO} \rightarrow \mathrm{CO}_{2}+\mathrm{Zn}$
d) $\mathrm{CuSO}_{4}+\mathrm{Mg} \rightarrow \mathrm{MgSO}_{4}+\mathrm{Cu}$
e) $\mathrm{AlCl}_{3}+3 \mathrm{Li} \rightarrow 3 \mathrm{LiCl}+\mathrm{Al}$
f) $3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ga} \rightarrow 2 \mathrm{Ga}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{Cu}$
g) $\mathrm{Cl}_{2}+2 \mathrm{NaBr} \rightarrow 2 \mathrm{NaCl}+\mathrm{Br}_{2}$
h) $2 \mathrm{TII}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{TIBr}+\mathrm{I}_{2}$
i) $4 \mathrm{PF}_{3}+0.5 \mathrm{~N}_{2} \rightarrow \mathrm{P}_{4}+\mathrm{NF}_{3}$

SECTION D

(a) $\mathrm{Li}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{LiOH}$
(b) $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
(d) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Na}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(e) $\mathrm{MgO}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
(f) $\mathrm{SO}_{3}+\mathrm{CaO} \rightarrow \mathrm{CaSO}_{4}$
(g) $\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}$
(h) $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
(i) $\mathrm{Sr}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(j) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Au}_{2} \mathrm{O} \rightarrow \mathrm{Au}_{2}\left(\mathrm{SO}_{4}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
(m) $2 \mathrm{KOH}+\mathrm{CO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$
(n) $\mathrm{PbO}+2 \mathrm{NO}_{2}+1.5 \mathrm{O}_{2} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$
(o) $6 \mathrm{HCl}+\mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{AlCl}_{3}+\mathrm{H}_{2} \mathrm{O}$
(p) $\mathrm{Ga}(\mathrm{OH})_{3}+3 \mathrm{HNO}_{3} \rightarrow \mathrm{Ga}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}$
(r) $3 \mathrm{SnO}_{2}+4 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{4}+6 \mathrm{H}_{2} \mathrm{O}$
(q) $3 \mathrm{SiO}_{2}+2 \mathrm{TI}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Tl}_{4}\left(\mathrm{SiO}_{4}\right)_{3}$

Section E Miscellaneous 1	Section F Miscellaneous 2
a. $2 \mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}$	1. $\mathrm{Tl}_{2}\left(\mathrm{SO}_{3}\right)_{3}+3 \mathrm{Mg} \rightarrow 2 \mathrm{Tl}+3 \mathrm{MgSO}_{3}$
b. $2 \mathrm{LiNO}_{3} \rightarrow \mathrm{Li}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$	2. $3 \mathrm{Ba}+\mathrm{N}_{2} \rightarrow \mathrm{Ba}_{3} \mathrm{~N}_{2}$
c. $\mathrm{KNO}_{3} \rightarrow \mathrm{KNO}_{2}+1 / 2 \mathrm{O}_{2}$	3. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{SO}_{3}$
d. $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$	4. $2 \mathrm{LiNO}_{3} \rightarrow \mathrm{Li}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$
e. $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}+7.5 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	5. $\mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{NaAlO}_{2}+\mathrm{H}_{2} \mathrm{O}$
f. $\mathrm{Cu}_{3} \mathrm{~N}_{2}+3 \mathrm{O}_{2} \rightarrow 3 \mathrm{CuO}+\mathrm{NO}+\mathrm{NO}_{2}$	6. $\left(\mathrm{NH}_{4}\right) \mathrm{CO}_{3}+2 \mathrm{HNO}_{2} \rightarrow 2 \mathrm{NH}_{4} \mathrm{NO}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
g. $2 \mathrm{NH}_{3}+2.5 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$	7. $\mathrm{Ga}_{2} \mathrm{~S}_{3}+6 \mathrm{HBr} \rightarrow 2 \mathrm{GaBr}_{3}+3 \mathrm{H}_{2} \mathrm{~S}$
h. $3 \mathrm{Bi}_{2} \mathrm{O}_{5}+10 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 2 \mathrm{Bi}_{3}\left(\mathrm{PO}_{4}\right)_{5}+15 \mathrm{H}_{2} \mathrm{O}$	8. $3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$
i. $2 \mathrm{Tl}\left(\mathrm{HCO}_{3}\right)_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{Tl}_{2}\left(\mathrm{SO}_{3}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2}$	9. $\mathrm{Ga}\left(\mathrm{HCO}_{3}\right)_{3}+3 \mathrm{HClO}_{3} \rightarrow \mathrm{Ga}\left(\mathrm{ClO}_{3}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}$
j. $\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{SO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$	10. $\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{SO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
k. $\mathrm{Po}(\mathrm{OH})_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \rightarrow \mathrm{PoSO}_{4}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$	11. $2 \mathrm{Bi}(\mathrm{OH})_{5}+5\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{2} \rightarrow \mathrm{Bi}_{2}\left(\mathrm{SO}_{4}\right)_{5}+10 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
I. $\mathrm{Zn}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	12. $\mathrm{ZnO}+2 \mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{Zn}\left(\mathrm{AlO}_{2}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\begin{aligned} & \text { m. } \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2} \\ & \text { n. } \mathrm{Ga}\left(\mathrm{HCO}_{3}\right)_{3}+3 \mathrm{HClO}_{3} \rightarrow \mathrm{Ga}\left(\mathrm{ClO}_{3}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2} \end{aligned}$	

Section G

1. Aluminium + iodine \rightarrow aluminium iodide

$$
2 \mathrm{Al}+3 \mathrm{I}_{2} \rightarrow 2 \mathrm{All}_{3}
$$

2. Potassium hydroxide + sulfuric acid \rightarrow potassium sulfate + water
$2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
3. Lithium + oxygen \rightarrow Lithium oxide
$4 \mathrm{Li}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}$
4. Lead(II) oxide + nitric acid \rightarrow lead(II) nitrate + water
$\mathrm{PbO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
5. Polonium + nitrogen \rightarrow polonium(II) nitride
$3 \mathrm{Po}+\mathrm{N}_{2} \rightarrow \mathrm{PO}_{3} \mathrm{~N}_{2}$
6. Ammonium carbonate + hydrochloric acid \rightarrow ammonium chloride + carbon dioxide + water
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
7. Sodium + water \rightarrow sodium hydroxide + hydrogen
$\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+1 / 2 \mathrm{O}_{2}$
8. Iron(II) hydrogencarbonate + phosphoric acid \rightarrow iron(II) phosphate + water + carbon dioxide $3 \mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow$
$\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}$
9. Calcium + water \rightarrow calcium hydroxide + hydrogen
$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
10. Gallium + chloric acid \rightarrow Gallium chlorate + hydrogen $2 \mathrm{Ga}+6 \mathrm{HClO}_{3} \rightarrow 2 \mathrm{Ga}\left(\mathrm{ClO}_{3}\right)_{3}+3 \mathrm{H}_{2}$
11. Carbon dioxide + sodium hydroxide \rightarrow sodium hydrogencarbonate $\mathrm{CO}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaHCO}_{3}$
12. Aluminium nitrate \rightarrow aluminium oxide + nitrogen dioxide + oxygen $4 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}+12 \mathrm{NO}_{2}+3 \mathrm{O}_{2}$
13. Methanethiol + oxygen \rightarrow carbon dioxide + sulfur dioxide + water $\mathrm{CH}_{3} \mathrm{SH}+3 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
14. Silicon oxide + sodium oxide \rightarrow sodium silicate $\mathrm{SiO}_{2}+\mathrm{Na}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{SiO}_{3}$
15. Gallium + hydroiodic acid \rightarrow gallium iodide + hydrogen $2 \mathrm{Ga}+6 \mathrm{HI} \rightarrow 2 \mathrm{Gal}_{3}+3 \mathrm{H}_{2}$
16. Carbon dioxide + aluminium oxide \rightarrow aluminium carbonate $\mathrm{CO}_{2}+\mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
17. Sulfur trioxide + copper oxide \rightarrow copper sulfate $\mathrm{SO}_{3}+\mathrm{CuO} \rightarrow \mathrm{CuSO}_{4}$
18. Magnesium hydroxide + aluminium oxide ?? \rightarrow magnesium aluminate + water
19. Dodecane + oxygen \rightarrow carbon monoxide + carbon + water
$\mathrm{C}_{12} \mathrm{H}_{26}+9 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}+7 \mathrm{C}+13 \mathrm{H}_{2} \mathrm{O}$
20. Ammonia + oxygen \rightarrow nitric oxide + water $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
21. Phosphorus + chlorine \rightarrow phosphorus pentachloride $\mathrm{P}_{4}+10 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{PCl}_{5}$
22. Chlorine + oxygen \rightarrow dichlorine heptoxide $2 \mathrm{Cl}_{2}+7 \mathrm{O}_{2} \rightarrow 2 \mathrm{Cl}_{2} \mathrm{O}_{7}$
23. Nitrogen dioxide + oxygen + barium oxide \rightarrow barium nitrate $4 \mathrm{NO}_{2}+\mathrm{O}_{2}+2 \mathrm{BaO} \rightarrow 2 \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
24. carbon dioxide + sodium oxide \rightarrow sodium carbonate $\mathrm{CO}_{2}+\mathrm{Na}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}$
25. Phosphorus trioxide + calcium oxide + oxygen \rightarrow calcium phosphate
$\mathrm{P}_{4} \mathrm{O}_{6}+6 \mathrm{CaO}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
